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ABSTRACT

Spatial distributions of low-permeability soils, such as clay, silt, and mud, are 
important for establishing hydrogeological maps and can affect groundwater flow 
and recharge and contaminant transport in soil solutes. This study adopted indicator 
kriging (IK) to spatially characterize the optimal estimates and uncertainty of the 
low-permeability soil fraction in the Choushui River alluvial fan aquifers in Taiwan. 
First, IK was used to analyze the occurrence probabilities of low-permeability soil 
fractions according to several thresholds and to establish the conditional cumulative 
distribution function (CCDF) using a linear interpolation model. Then, median esti-
mates and E-type estimates of the low-permeability soil fractions in aquifers were de-
termined based on the CCDF. Finally, the integration of the conditional variance and 
interquartile range was employed to assess the local uncertainty of IK estimates. The 
analysis results indicated that the median estimates were more reliable than the E-type 
estimates and capable of modeling the absence of low-permeability soils in aquifers. 
Moreover, high estimated low-permeability soil fractions frequently gave rise to the 
high levels of local uncertainty. The study results are useful for modifying hydrogeo-
logical system maps and establishing numerical simulations of groundwater models.
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1. INTRODUCTION

Establishing a hydrogeological system requires de-
tailed spatial information on the types and distributions of 
subsurface soils. Generally, gravels and sands with high 
permeability and excellent groundwater storage are re-
garded as aquifers, whereas clay, silt, and mud with low 
permeability and poor groundwater storage serve as aqui-
tards (Gerber et al. 2001; Liu et al. 2006; Cheng and Chen 
2007). Low-permeability soils in aquifers, such as clay, silt, 
and mud, restrict groundwater flow and recharge (Marinoni 
2003) and strongly affect contaminant transport in soil sol-
utes (Johnson et al. 1989). Before numerical groundwater 
models, such as MODFLOW (Harbaugh and McDonald 
1996), MT3D (Zheng 1996), and 3DFEMWATER (Yeh 
1987), are used to simulate groundwater flow and pollutant 
transport, the spatial distribution of low-permeability soils 
must be comprehensively established (Ting et al. 1998; 

Jang et al. 2016a). In addition, owing to the interactions 
between marine and continental sediments, many alluvial 
sedimentary environments have complicated hydrogeologi-
cal patterns (Pham and Tsai 2017), and many thin layers of 
low-permeability soils frequently appear in an aquifer. A 
low-permeability soil fraction in an aquifer can be adopted 
to characterize soil permeability and water movement (Del-
bari et al. 2011; Shahriari et al. 2019) and explore the hy-
drogeological system of complicated sedimentary environ-
ments. Therefore, determining a sound spatial distribution 
of the low-permeability soil fraction in an aquifer is critical 
for exploring hydrogeological characteristics and ground-
water resource management.

Distributions of low-permeability soils in aquifers 
typically exhibit high levels of spatial variability due to 
soil heterogeneity. However, borehole data on soil textures 
are typically limited, resulting that determining the spatial 
distribution of low-permeability soils in aquifers is rather 
difficult according to finite observations. Geostatistics is 
a common spatial analysis tool that conducts the spatial 
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distributions of observations with uncertainty (Isaaks and 
Srivastava 1989). Ordinary kriging (OK) is a method of 
linearly weighted moving averages based on neighboring 
observations. However, OK, which typically overestimates 
low observations and underestimates high observations, 
gives rise to unreal soil layer distributions owing to de-
creasing spatial variability when OK is used to model soil 
distributions (Marinoni 2003). A distribution-free geosta-
tistical technique, indicator kriging (IK), is lightly impacted 
by outliers and produces a robust estimate through the bi-
nary transformation of observations. At an unobserved site, 
the estimated values using IK denote the occurrence prob-
ability of variables that do not surpass a certain cutoff (Yeh 
et al. 2020). The kriging technique has been frequently ap-
plied to spatially estimate the thickness or fractions of dif-
ferent soil textures (D’Or et al. 2001; Marinoni 2003; Del-
bari et al. 2011; Chen et al. 2013; Jang et al. 2013, 2016b; 
Park and Jang 2014) and the presence or absence of certain 
soil types (Bastante et al. 2008; Jang et al. 2013; Pham and 
Tsai 2017). Although having an advantage in estimates of 
extreme values, the IK technique could cause the loss of in-
formation when a spatial variable was transformed into an 
indicator value according to a specified cutoff (Goovaerts 
1997). Jang et al. (2016b) used a combined ordinary-indica-
tor kriging approach with multiple thresholds to determine 
the spatial distributions and thicknesses of low permeability 
topsoil materials in the Choushui River alluvial fan, Tai-
wan, according to maximal probability density functions 
among different categories. However, Jang et al. (2016b) 
only focused on low permeability topsoil materials and did 
not conduct low-permeability soil fractions of all aquifers. 
Additionally, kriging estimates at unknown sites typically 
have local uncertainty. The assessment of local uncertainty 
is important for evaluating risks involved in decision-mak-
ing processes. Two uncertainty measurement methods-con-
ditional variance (CV) and interquartile range (IQR), which 
were similar to the kriging variance obtained by OK, can be 
used to model the uncertainty of IK estimates (Goovaerts 
2001; Goovaerts et al. 2005). Accordingly, this study used 
uncertainty measurement methods based on IK estimates to 
propagate the uncertainty of the estimated low-permeability 
soil fraction and to facilitate establishing a correct hydro-
geological map and conducting calibration procedures for 
groundwater model simulations. To compare with Jang et 
al. (2016b), the novelty of this study is the combination 
of kriging estimates and uncertainty measurements for the 
low-permeability soil fractions in aquifers, which is use-
ful for establishing hydrogeological maps and groundwater 
model simulations.

This study adopted IK to spatially model the optimal es-
timates and uncertainty of the low-permeability soil fraction 
in the aquifers of the Choushui River alluvial fan in Taiwan. 
First, IK was used to quantify the occurrence probabilities 
of the low-permeability soil fraction according to several 

thresholds and establish the conditional cumulative distri-
bution function (CCDF) using a linear interpolation model. 
Then, median estimates and E-type estimates of low-per-
meability soil fractions in aquifers were determined based 
on the CCDF. Finally, the integration of CV and IQR was 
employed to assess the local uncertainty of the IK estimates.

2. MATERIALS AND METHODS
2.1 Hydrogeology of the Study Area

The Choushui River alluvial fan, which covers an 
area of about 2300 km2, is encircled by the Wu River to the 
north, the Peikang River to the south, the Taiwan Strait to 
the west, and the Dulliu Hill and Baguah Mountain to the 
east (Fig. 1). The average annual precipitation recorded be-
tween 2010 and 2019 was approximately 1615 mm in this 
area (Taiwan Central Weather Bureau 2020). This alluvial 
fan is mainly composed of Quaternary unconsolidated de-
posits with abundant groundwater. Seventy-two geological 
boreholes were established at 300 m depths between 1992 
and 1998, and the types and depths of subsurface soils were 
recorded. The hydrogeology in this alluvial fan was gen-
erally divided into proximal-, mid-, and distal-fan areas. 
Because of the interactions among marine and continen-
tal deposits, eight overlapping sequences, including four 
aquifers and four aquitards, were located in the distal- and 
mid-fan areas (Taiwan CGS 1999). The four aquifers are 
named “aquifer 1”, “aquifer 2”, “aquifer 3”, and “aquifer 
4” from top to bottom in the distal- and mid-fan regions 
(Fig. 2) (Liu et al. 2006). The eastern proximal-fan areas 
are an unconfined aquifer for natural groundwater recharge. 
According to the delineation of the hydrogeological system 
proposed by the Taiwan CGS (1999), the distal- and mid-
fan aquifers frequently exhibit a markedly large fraction of 
low-permeability soils, indicating a complicated hydrogeo-
logical pattern.

2.2 Data on the Low-Permeability Soil Fractions in 
Aquifers

This study used data on soil textures in 72 boreholes 
and the hydrogeological system map of the Choushui River 
alluvial fan reported by the Taiwan CGS (1999). Because 
this study focused on quantifying low-permeability soils in 
aquifers, the summation of the length of clay, silt, and mud 
in an aquifer was divided by the thickness of the aquifer 
in a borehole to obtain the low-permeability soil fractions. 
Figure 3 shows the spatial distribution of the low-permea-
bility soil fractions in aquifers. A high low-permeability soil 
fraction frequently occurred in the distal- and mid-fan aqui-
fers, while a low low-permeability soil fraction was pres-
ent in the proximal-fan aquifers. The low-permeability soil 
fractions in aquifers were examined using a Kolmogorov-
Smirnov normality test, indicating that they were not  
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normally distributed (p < 0.001). Thus, this study adopted a 
distribution-free geostatistical technique, IK, to characterize 
the low-permeability soil fractions in aquifers. Table 1 lists 
the statistics regarding the low-permeability soil fractions in 
aquifers. The low-permeability soil fractions were larger in 
aquifer 1 than in the remaining aquifers. The soil fractions 
had greater skewness in aquifers 3 and 4 than in aquifers 1 
and 2. Table 2 reports proportions of observed fractions of 
low-permeability soil in aquifers for various classes. The 

classes of 0.1 - 0.3, 0.1 - 0.2, 0 - 0.2, and 0 were predomi-
nant in aquifers 1, 2, 3, and 4, respectively, for the propor-
tions of low-permeability soil fractions.

2.3 Indicator-Based Geostatistical Technique
2.3.1 Variogram Analysis

An experimental variogram, γ(h), can quantify the spa-
tial variability of variables between two sites separated by a 

Fig. 1. Study area.

Fig. 2. Conceptual hydrogeological profile.
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(a) (b)

(c) (d)
Fig. 3. Observed fractions of low-permeability soils in aquifers.

Statistics Aquifer 1 Aquifer 2 Aquifer 3 Aquifer 4

Average 0.260 0.193 0.200 0.110

Standard deviation 0.203 0.141 0.179 0.192

Skewness 0.795 0.694 1.098 2.085

Maximum 0.865 0.571 0.780 0.865

Zero-fraction percentile 13.8th 9.7th 17.9th 60.3rd

Percentiles 10th 0 0.031 0 0

20th 0.069 0.074 0.033 0

30th 0.128 0.105 0.076 0

40th 0.175 0.131 0.124 0

50th 0.241 0.158 0.164 0

60th 0.283 0.189 0.220 0

70th 0.334 0.262 0.286 0.122

80th 0.429 0.331 0.311 0.221

90th 0.564 0.383 0.438 0.389

Table 1. Statistics regarding low-permeability soil fractions in aquifers.
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vector h (Isaaks and Srivastava 1989).

( ) ( ) ( ) ( )N z z2
1h h u h u

( )

i i
i

N
2

1

h
c = + -

=
6 @' 1/  (1)

where N(h) is the number of pairs, ui is the vector of location 
coordinates, z(ui) and z(ui + h) are the spatial variables, and 
h is the lag distance. The experimental variogram is then 
fitted by a theoretical model, such as spherical, exponen-
tial, or Gaussian models with the nugget effect (c0), sill (c), 
and range (a). The least-squares method with the smallest 
fitting error is used to determine an optimal theoretical var-
iogram model. The mathematical formulas of the spherical, 
exponential, and Gaussian models are expressed as follows 
(Isaaks and Srivastava 1989).
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2.3.2 Indicator Kriging

IK is a distribution-free geostatistical technique, and 
the estimate signifies the occurrence probability not exceed-
ing a given cutoff zk at a certain site u (Goovaerts 1997). 
Before the IK algorithm, the spatial variable Z(u) is first 
transformed into a binary response (i.e., indicator variable), 
which is defined as follows (Goovaerts 1997).

( ; ) ,
,

( ) , , , ...,I z Z z k m1
0

1 2if
otherwiseu u

k
k#= ='  (5)

The expected value of I(u; zk) subject to n neighboring data 
can be written as follows (Goovaerts 1997).
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where F[u; zk|(n)] is the CCDF for Z(u) not exceeding zk. 
This study employed the GAMV and IK3D codes in GSLIB 
(Deutsch and Journel 1997) for analyzing the experimental 
variogram and IK, respectively.

2.3.3 Optimal Estimates

Goovaerts (1997) suggested several methods of opti-
mal estimates for IK when a unique estimate was selected 
from the range of the corresponding z-values in the CCDF. 
This study adopted the median estimate and E-type estimate 
to determine low-permeability soil fractions in aquifers. The 
median estimate, ( )z u*

ME , is the corresponding fraction of 
the 0.5 probability in the CCDF at a site u and is expressed 
as follows (Goovaerts 1997):
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The E-type estimate, ( )z u*
EE , is the expected value of the 

CCDF at a site u and is defined as (Goovaerts 1997)
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2.3.4 Measure of Local Uncertainty

The methods of CV and IQR are typically used to  

Fraction classes Aquifer 1 Aquifer 2 Aquifer 3 Aquifer 4

0 13.9 9.7 18.1 61.1

0 - 0.1 11.1 19.4 19.4 8.3

0.1 - 0.2 19.4 33.3 19.4 11.1

0.2 - 0.3 19.4 12.5 18.1 2.8

0.3 - 0.4 12.5 16.7 12.5 8.3

0.4 - 0.5 11.1 5.6 5.6 1.4

0.5 - 0.6 4.2 2.8 2.8 2.8

0.6 - 0.7 4.2 0.0 1.4 1.4

> 0.7 4.2 0.0 2.8 2.8

Table 2. Proportions (%) of observed fractions of low-permeabili-
ty soil in aquifers for different classes.
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measure the local uncertainty of IK estimates (Goovaerts 
1997). CV, ( )uCV

2v , quantifies the spread of the conditional 
probability density function (CPDF) around the expected 
value, ( )z u*

EE . ( )uCV
2v  is defined as follows (Goovaerts 

1997). 

( )

( ) ( ; ( )) ( ; ( ))z z F z n F z n

u

u u u*

CV

k EE k k
k

K

2

2
1

1

1

$

v =

- - -
=

+ 6 6@ @/  (9)

where the K cutoffs are adopted to classify spatial variables, 
zk  is the average of the class (zk-1, zk), and F[u; zk|(n)] and 
F[u; zk-1|(n)] are the CCDF at the classes zk and zk-1, respec-
tively. To simplify the computation of ( )z u*

EE , a linear mod-
el is adopted to interpolate the CCDFs. The IQR(u) is the 
difference between the reverse estimates of the CCDF at the 
probabilities of 0.75 and 0.25 and can be expressed as fol-
lows (Goovaerts 1997).

( ) ( ; . ) ( ; . ( ))( )F F nn0 75 0 52IQR u u u1 1= -- -  (10)

where F-1[u; 0.75|(n)] and F-1[u; 0.25|(n)] are the reverse 
estimates of the CCDF at the probabilities of 0.75 and 0.25, 
respectively.

2.3.5 Cross-Validation

In a leave-one-out cross-validation procedure, each 
observation is first removed and then reestimated from the 
remaining observations using OK (Isaaks and Srivastava 
1989). This study used the kriging mean error (KME) and 
mean square standard error (MSSE) to evaluate the suit-
ability of the determined spatial variogram structure and the 
performance of the kriging estimator. The two parameters 
are defined as (Chilès and Delfiner 1999; Deutsch 2002)
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where I*(ui) and I(ui) are the estimated and observed values 
of the indicator variables, respectively, at the ith site; n is 
the number of observations; and ( )uk iv  and ( )uk i

2v  are the 
kriging standard deviation and variance, respectively, at the 
ith site. The KME and MSSE, which are close to nil and uni-
ty, respectively, indicate that the fitting model and param-
eters of the determined theoretical variograms are excellent, 
and the kriging estimates are robust. In addition, the MSSE 
can be accepted by the range of ±3(2/n)0.5 (i.e., the range of 
0.5 - 1.5 for 72 borehole data) (Chilès and Delfiner 1999).

3. RESULTS
3.1 Variogram Analyses of the Low-Permeability Soil 

Fractions

This study considered the zero fraction of low-permea-
bility soils as the first threshold and adopted the 10th, 20th, 
30th, 40th, 50th, 60th, 70th, 80th, and 90th percentiles of the 
observed low-permeability soil fractions in each aquifer to 
establish other thresholds (shown in Table 1) when the cor-
responding fractions of the percentiles were not zero. How-
ever, the 10th and 20th percentiles of the low-permeability 
soil fractions in aquifers 2 and 3, respectively, were consid-
erably close to the zero-fraction percentile. Thus, the thresh-
olds of the 10th and 20th percentiles in aquifers 2 and 3, 
respectively, were ignored. The numbers of the thresholds 
in aquifers 1, 2, 3, and 4 were 9, 9, 8, and 4, respectively. 
In addition, Goovaerts (1997) suggested that a reasonable 
number of thresholds ranges from 5 to 15 for establishing 
the CCDF using IK. In this study, the number of the thresh-
olds was within a reasonable range in aquifers 1, 2, and 3 
and below the reasonable range in aquifer 4 due to the limi-
tation of observations.

This study employed a 5000 m lag to analyze the exper-
imental omni-variogram for low-permeability soil fractions 
(Fig. 4). The number of pairs ranged from 98 to 339 for the 
experimental variograms. The exponential and spherical the-
oretical models provided the optimal fit for the variograms in 
aquifers 1 and 4 and aquifers 2 and 3, respectively. The fitted 
nugget effect, sill, and range were respectively 0.04 - 0.15, 
0.05 - 0.11, and 20000 - 27000 m in aquifer 1, 0.02 - 0.11, 
0.06 - 0.16, and 15000 - 45000 m in aquifer 2, 0.05 - 0.12, 
0.06 - 0.21, and 22000 - 35000 m in aquifer 3, and 0.04 - 
0.15, 0.06 - 0.11, and 20000 - 23000 m in aquifer 4 (Table 3). 
The nugget effect-to-sill proportions (c0/c) of ≤ 0.25, 0.25 - 
0.75, and > 0.75 signified strong, moderate, and weak spatial 
correlations (Cambardella et al. 1994), respectively. The c0/c 
values ranged from 0.63 to 1.44 in aquifer 1, 0.18 to 1.11 in 
aquifer 2, 0.33 to 1.09 in aquifer 3, and 0.67 to 1.50 in aqui-
fer 4 (Table 3). The analysis results revealed that moderate 
and weak spatial correlations were present for most indicator 
variables of the low-permeability soil fractions.

3.2 CCDF Establishment of the Low-Permeability Soil 
Fractions

This study utilized IK to establish the CCDF for low-
permeability soil fractions in aquifers based on various 
thresholds. A grid of 55 × 81 cells with a 1000 m spacing 
was assigned to each aquifer. However, 2225 active cells 
were found within each aquifer of this study area.

Figure 5 displays the CCDFs at various thresholds 
in the four aquifers. Generally, a higher probability in the 
CCDF represents a lower fraction of low-permeability soils. 
The high probabilities in the CCDF mainly occurred in the 
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Fig. 4. The experimental and fitted theoretical variograms of indicator variables for the low-permeability soil fractions in aquifers.
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Fig. 4. (Continued)

Aquifers Thresholds (percentiles) Fractions Model c0 c a (m) c0/c KME MSSE

1 1st (13.8th) 0.000 Ea 0.05 0.08 20000 0.63 -0.015 1.207

2nd (20th) 0.069 E 0.10 0.07 27000 1.43 -0.015 0.911

3rd (30th) 0.128 E 0.13 0.09 23000 1.44 -0.025 1.004

4th (40th) 0.175 E 0.15 0.11 20000 1.36 -0.004 1.022

5th (50th) 0.241 E 0.15 0.11 20000 1.36 -0.013 1.126

6th (60th) 0.283 E 0.15 0.11 20000 1.36 0.005 1.170

7th (70th) 0.334 E 0.11 0.11 20000 1.00 0.008 1.174

8th (80th) 0.429 E 0.08 0.08 20000 1.00 0.023 1.323

9th (90th) 0.564 E 0.04 0.05 20000 0.80 0.006 1.415

2 1st (9.7th) 0.000 Sb 0.02 0.11 45000 0.18 0.002 1.118

2nd (20th) 0.074 S 0.10 0.09 40000 1.11 0.006 0.911

3rd (30th) 0.105 S 0.10 0.13 25000 0.77 0.003 0.973

4th (40th) 0.131 S 0.11 0.15 22000 0.73 0.007 1.159

5th (50th) 0.158 S 0.11 0.16 25000 0.69 0.012 1.211

6th (60th) 0.189 S 0.11 0.16 25000 0.69 0.003 1.114

7th (70th) 0.262 S 0.10 0.12 18000 0.83 -0.011 1.075

8th (80th) 0.331 S 0.08 0.08 15000 1.00 0.000 1.148

9th (90th) 0.383 S 0.03 0.06 16000 0.50 0.006 1.357

Table 3. Fitted theoretical variograms of indicator variables for the low-permeability soil fractions in aquifers 
and the cross-validation parameters.

Note: aE: exponential model; bS: spherical model.
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Aquifers Thresholds (percentiles) Fractions Model c0 c a (m) c0/c KME MSSE

3 1st (17.9th) 0.000 S 0.07 0.10 35000 0.70 0.007 1.351

2nd (30th) 0.076 S 0.12 0.11 25000 1.09 0.020 1.182

3rd (40th) 0.124 S 0.08 0.18 22000 0.44 0.024 1.197

4th (50th) 0.164 S 0.08 0.20 23000 0.40 0.019 1.113

5th (60th) 0.220 S 0.07 0.21 25000 0.33 0.017 1.173

6th (70th) 0.286 S 0.09 0.15 23000 0.60 0.015 1.131

7th (80th) 0.311 S 0.07 0.13 23000 0.54 0.012 1.257

8th (90th) 0.438 S 0.05 0.06 22000 0.83 0.006 1.152

4 1st (60.3rd) 0.000 E 0.15 0.10 20000 1.50 -0.006 1.353

2nd (70th) 0.122 E 0.12 0.11 20000 1.09 0.000 1.338

3rd (80th) 0.221 E 0.08 0.10 23000 0.80 -0.005 1.313

4st (90th) 0.389 E 0.04 0.06 22000 0.67 -0.001 1.304

Table 3. (Continued)

Fig. 5. Estimated CCDF at different thresholds in aquifers.
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proximal-fan region and the southwestern and southeastern 
parts of aquifer 1, the proximal- and mid-fan regions and the 
northern, partially southwestern coastal and southeastern 
parts of aquifer 2, and the proximal-fan region and the par-
tially northern, southwestern coastal, and southeastern parts 
of aquifers 3 and 4. In addition, the cross-validation results 
indicated that the KME and MSSE ranged from -0.025 to 
0.024 and from 0.911 to 1.415 (Table 3), respectively, dem-
onstrating that the fitting theoretical variograms and param-
eters are suitable and the IK estimates are excellent.

3.3 Optimal Estimates for Low-Permeability Soil 
Fractions

This study used a linear interpolation model within 
thresholds and the upper bound, unity, to establish CCDFs. 

The corresponding fractions of the 0.5 probability in the 
CCDF were obtained for each cell for median estimates. 
Figure 6 shows the median estimates for the low-permea-
bility soil fractions in the four aquifers. To compute an ex-
pected value, the CPDFs within classes at each cell were 
determined in advance. The E-type estimate was the sum-
mation of the average of a class multiplying the CPDF ac-
cording to Eq. (8). Figure 7 displays the E-type estimates for 
the low-permeability soil fractions in the four aquifers. The 
E-type estimates smoothed the spatial variability, while the 
median estimates exhibited a higher level of spatial hetero-
geneity than the E-type estimates. According to the median 
estimates, the high low-permeability soil fractions primarily 
occurred in the mid-fan, southwestern, and northern regions 
of aquifer 1, the western distal-fan and northern and south-
ern mid-fan regions of aquifers 2 and 3, and the western 

Fig. 5. (Continued)
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distal-fan regions of aquifer 4. In addition, Table 4 reports 
the areal proportions of different fraction classes for the me-
dian estimates and E-type estimates. The fraction classes of 
0.2 - 0.3, 0.1 - 0.2, 0.1 - 0.3, and 0 were dominant in aquifers 
1, 2, 3, and 4, respectively, according to the median esti-
mates. The fraction classes of 0.2 - 0.3, 0.1 - 0.2, 0.1 - 0.2, 
and 0 - 0.1 prevailed in aquifers 1, 2, 3, and 4, respectively, 
according to the E-type estimates.

3.4 Local Uncertainty of the IK Estimates

This study adopted CV and IQR to measure the local 
uncertainty of IK estimates conditional to the information 
available. Five levels of CV and IQR distributions were em-
ployed to characterize the uncertainty. The first level, which 
was below the 20th percentile of the CV and IQR distribu-
tions, was very low; the second level, which was the 20th 
to 40th percentiles of the CV and IQR distributions, was 
low; the third level, which was the 40th to 60th percentiles 
of the CV and IQR distributions, was medium; the fourth 
level, which was the 60th to 80th percentiles of the CV and 
IQR distributions, was high; and the fifth level, which was 
above the 80th percentile of the CV and IQR distributions, 
was very high.

Figures 8 and 9 display the levels of local uncertainty 
using CV and IQR, respectively. To acquire an integrated 
result, this study adopted a maximum level of local uncer-
tainty from CV and IQR for each cell (Chen et al. 2019). 
Figure 10 shows the five levels of integrated local uncer-
tainty. The high and very high levels of local uncertainty 
were mainly distributed in the mid- and distal-fan aquifers 
with high estimated low-permeability soil fractions.

4. DISCUSSION

This study considered the zero fraction of low-perme-
ability soils in aquifers as the first threshold. The median 
estimates and E-type estimates based on CCDF were used 

to spatially model low-permeability soil fractions in aqui-
fers. Although the absence of low-permeability soils com-
monly occurred in the aquifers, particularly in aquifer 4, the 
E-type estimates could not characterize the zero fraction 
of low-permeability soils in aquifers (see Tables 2 and 4), 
resulting in incorrect estimated results. Thus, the median 
estimates were capable of determining the absence of low-
permeability soils in aquifers and effectively reduced the 
smooth estimate effect. However, median estimates easily 
underestimated sparse high values surrounding numerous 
low values, particularly in aquifer 4. Because the presence 
or absence of low-permeability soils in aquifers strongly af-
fects groundwater flow and recharge (Marinoni 2003; Jang 
et al. 2013, 2016b), the framework of the median estimates 
based on IK with multiple thresholds can facilitate estab-
lishing the spatial characteristics of low-permeability soil 
fractions in aquifers for simulation models of groundwater 
flow and pollutant transport. In addition, although the upper 
tail means of CCDF for CV were more sensitive than those 
for IQR (Goovaerts 1997), the within-class linear interpola-
tion model used to establish CCDF reduced the difference 
between CV and IQR, resulting that the spatial patterns of 
CV were similar to those of IQR (Figs. 8 and 9). Moreover, 
high local uncertainty typically occurred in high values for 
CV and IQR.

Aquifers generally have a relatively low low-perme-
ability soil fraction. However, the presence of high low-
permeability soil fractions in aquifers indicates a compli-
cated hydrogeological system, easily resulting in incorrect 
hydrogeological delineation, particularly for high levels of 
local uncertainty. The Taiwan CGS can modify the hydro-
geological system map in the Choushui River alluvial fan 
based on the research results. Furthermore, low-permea-
bility soils affect the velocity and direction of groundwa-
ter flow (Liu et al. 2004) and are a barrier to groundwater 
flow and contaminant transport in soil solutes (Marinoni 
2003; Jang and Liu 2005). Correctly modeling the spa-
tial distribution and uncertainty of low-permeability soils 

(a)
Fraction class Aquifer 1 Aquifer 2 Aquifer 3 Aquifer 4

0 2.8 7.4 8.8 76.0

0 - 0.1 7.4 17.1 23.1 9.9

0.1 - 0.2 20.0 38.1 26.2 7.6

0.2 - 0.3 36.1 20.0 26.2 4.6

0.3 - 0.4 25.6 15.4 10.9 0.1

0.4 - 0.5 7.7 1.1 3.8 1.4

0.5 - 0.6 0.3 0.9 1.0 0.4

0.6 - 0.7 0.1 0.0 0.0 0.0

(b)
Fraction class Aquifer 1 Aquifer 2 Aquifer 3 Aquifer 4

0 0.0 0.0 0.0 2.8

0 - 0.1 4.8 13.6 23.3 48.7

0.1 - 0.2 18.6 35.9 33.5 31.8

0.2 - 0.3 32.4 32.9 21.1 13.3

0.3 - 0.4 29.7 12.4 13.4 2.7

0.4 - 0.5 14.1 4.8 5.9 0.7

0.5 - 0.6 0.4 0.4 2.8 0.0

0.6 - 0.7 0.0 0.0 0.0 0.0

Table 4. Areal percentages (%) of estimated fraction classes for the median estimates and E-type estimates. (a) Median estimates; 
(b) E-type estimates.
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in aquifers can facilitate the establishment of numerical 
simulation models of groundwater flow and contamina-
tion transport. Moreover, when high low-permeability soil 
fractions in aquifers have high levels of local uncertainty 
at certain sites, researchers should pay more attention to 
conducting calibration procedures for groundwater model 
simulations.

5. CONCLUSION

This study adopted IK to determine the optimal esti-
mates and uncertainty of the low-permeability soil fractions 
in the aquifers of the Choushui River alluvial fan. The medi-
an estimates and E-type estimates based on multi-threshold 
IK gave us an excellent insight into modelled spatial distri-
butions and uncertainty of the low-permeability soil frac-
tions in complicated aquifer systems. The analysis results 
revealed that the median estimates were more reliable than 

the E-type estimates and capable of characterizing the ab-
sence of low-permeability soils in aquifers. The high levels 
of local uncertainty were principally situated in the mid- and 
distal-fan aquifers with high estimated low-permeability 
soil fractions. To avoid incorrect hydrogeological delinea-
tion, researchers should pay more attention to problems as-
sociated with high low-permeability soil fractions in aqui-
fers with high levels of local uncertainty. Furthermore, the 
study results can provide government administrators with 
detailed information on modifying the hydrogeological sys-
tem map in the Choushui River alluvial fan and groundwa-
ter researchers with a reference for numerical simulation 
models of groundwater flow and contaminant transport.
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Fig. 10. Spatial distributions of integrated local uncertainty in the four aquifers based on five levels.
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