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ABSTRACT

The temperature-salinity relationship is one of the most important characteristics used for identifying water masses in 
marine research. Nonetheless, it is not easy to search, compare or analyse the temperature-salinity characteristic efficiently 
in the ocean database of a wide ranging area. Since marine data are typically collected over a wide range area, how to rep-
resent, manage and share such data flexibly and responsively is a critical issue in marine research. Visualization techniques 
are powerful media for data presentation and knowledge discovery. The temperature-salinity relationship that signifies the 
characteristics of water mass is modelled in this study as a polynomial function whose coefficients can be estimated through 
statistical regression. Based on such representation, the distance between two temperature-salinity characteristics could be 
measured automatically, allowing the comparison of similar water masses for a wide range area to be efficiently performed. 
The proposed approach can effectively reduce the amount of computations by aggregating the data with seasonal and spatial 
variations, facilitating the comparison of different water masses through sampling the temperature-salinity characteristics 
without degrading their discriminating capabilities. With reduced scale data it becomes feasible to visualize or compare them 
in real time. This tool is helpful for querying geographic locations with similar temperature-salinity characteristic interactively 
and for tracking specific patterns of water masses, such as the Kuroshio near Taiwan or those in the South China Sea.
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1. INTRODUCTION

The ocean database is a common basis for marine rele-
vant researches, including physical oceanography, chemical 
oceanography and so on. Ocean database management has 
long been difficult for several reasons. First, the collection 
and processing of marine data are expensive and laborious. 
Conventionally, marine data are observed and collected us-
ing instruments on cruises that navigate on the sea in a wide 
range area for a long period of time. The collected data are 
typically raw text files, which require further processing 
to ensure that they are accurate and consistent for merging 
into the database. Second, the huge amount of data makes 

it difficult to efficiently perform large-scale analysis, such 
as computing the statistics or comparing the characteristics 
of many locations. Even for the most advanced systems, 
finding the right pieces of information in a timely fashion 
in a large database still remains a difficult issue. Without 
appropriate data scale reduction it is usually infeasible to vi-
sualize or compare them in real time. Third, the ocean data-
base has potential users from diverse groups from different 
research communities, including military, economic, social, 
ecological or academic users, with individual information 
needs. The database management system therefore needs to 
provide the users a flexible interface that can meet diverse 
requirements for potential users, from low-level raw data to 
high-level statistical or analytical data. As a consequence, 
designing and building a flexible and reusable management 
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system for the ocean database is a challenging issue.
Temperature-salinity (T-S) relationship that can express 

the equation state of sea water has long been an important 
characteristic in oceanology. It is often used to determine the 
nature of the transformation and interaction of different waters 
(Mamayev 1975), or to identify water masses. Conventional 
analysis of water masses requires manual comparison for a 
few figures of T-S relationship generated from the observed 
data. Provided that the figures for a wide range area could be 
automatically compared and visualized efficiently, it would 
be beneficial for large scale or cross-domain researches of 
water masses. Therefore, efficient search, comparison and 
analysis of the T-S characteristics for a wide range area are 
touchstones for an advanced ocean database system.

This paper presents a flexible ocean database man-
agement system that allows the user to query similar water 
masses for a wide range area. Regression analysis of T-S 
characteristics in marine data is studied first with a similarity 
measure for two T-S characteristics proposed to automati-
cally compare different water masses. This makes it possible 
to efficiently identify similar water masses for a reference 
location in a wide range area. The proposed database man-
agement system was built based on service oriented archi-
tecture (SOA) that can achieve flexibility, scalability and 
interoperability (Garlan 2000). Data aggregation in the data 
layer is devised to effectively reduce the computational cost 
of statistical or analytical data such as the T-S characteristic, 
while web services of different types, such as primary web 
services and analytical web services, in the service layer can 
be exported for flexible integration. The web client further 
consumes the services, visualizes the data geographically and 
responsively interacts with the users. The analysis approach 
and the reference architecture were successfully applied to 
a web tool that presents the T-S characteristic interactively 
based on conductivity-temperature-depth (CTD) data near 

Taiwan. The proposed approach was finally validated on 
the Kuroshio distribution and it was found that similar water 
masses from a reference location within the Kuroshio region 
obtained using this approach coincide highly with the Kuro-
shio paths obtained from other ocean researches.

2. BACKGROUND TECHNOLOGIES AND  
METHODS

2.1 Temperature-Salinity Curves of Water Mass

According to Mamayev (1975), the T-S relationship 
analysis, together with the field expressing the state equa-
tion of the sea water, allow us to take into account the most 
important factors that determine the nature of the transfor-
mation and interaction of different waters. Water masses 
usually refer to persistent T-S characteristics. One benefit of 
the T-S relationship is that it allows us to map the geograph-
ic distribution of different water property groups (Kim et al. 
1991). T-S relationship is therefore utilized in this study be-
cause it is an effective characteristic for identifying a water 
mass and has been widely used in oceanography. One ex-
ample of the T-S relationship for CTD cast A6D1 of cruise 
ORIII 1470 is presented in Fig. 1. The red point in Fig. 1a 
indicates a location on the path of the Kuroshio region (Li-
ang et al. 2008). The Fig. 1b is the T-S relationship corre-
sponding to the red point on the left hand side. The known 
dataset of water masses for the Kuroshio region around Tai-
wan will be used as the target for T-S characteristic analysis 
in this study because the Kuroshio has characteristics so dif-
ferent from the other water masses prominently in this area 
that it can be identified visually.

2.2 Oceanography Data near Taiwan

Taiwan, located between the tropics and the subtropics,  

Fig. 1. T-S relationship for CTD cast A6D1 of cruise ORIII 1470, provided by the Ocean Data Bank of Taiwan’s Ministry of Science and Technol-
ogy operated by the Institute of Oceanography, National Taiwan University. The red point in (a) indicates a location on the path of the Kuroshio 
region (Liang et al. 2008); (b) is the T-S relationship corresponding to the red point on the left hand side.

(a) (b)
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lies on the border between the largest land mass and the  
largest ocean in the world, where the marine and atmospheric 
environments are complex and sensitive (Chien et al. 2010). 
A large scale area oceanographic database called the Ocean 
Data Bank (ODB) was adopted to analyze the water masses 
around Taiwan. The data bank’s website is www.odb.ntu.
edu.tw. This database belongs to the Ocean Data Bank of 
the Ministry of Science and Technology (ODB/MOST), ini-
tiated and operated by the Institute of Oceanography, Na-
tional Taiwan University since 1986. The main data sources 
in the ODB are provided by R/V Ocean Researchers I, II, 
and III through long-term surveys around Taiwan over the 
past three decades. More than 20 million CTD data has been 
accumulated over the past 25 years from over forty thou-
sand stations. ODB/MOST provides CTD data for relevant 
investigations in the East Asian Seas region. The ocean con-
ductivity, temperature and depth distribution for the region 
around 10° - 30°N and 110° - 130°E are presented in this 
study. The temperature-salinity data were collected from 
1986 - 2010 by Ocean Researchers I, II, and III using the 
CTD instrument. We use the annual CTD maximum depth 
data from 23709 Casts (between 0 - 5513 m) collected dur-
ing the last 25 years, from 1986 till 2010. There are more 
than 20 million records collected and processed by ODB/
MOST with strict quality control. The cruise track informa-
tion is shown in Fig. 2, in which the pink line denotes the 
cruise tracks of Ocean Researcher I, the green line denotes 
the cruise tracks of Ocean Researcher II, and the blue line 
denotes the cruise tracks of Ocean Researcher III.

2.3 Polynomial Regression

Polynomial regression (Stigler 1971) is a form of re-
gression in which the relationship between the indepen-
dent variable x and the dependent variable y is modelled 
as a polynomial of degree n. The relationship can be used 
to describe nonlinear relationships, such as the growth rate 
of tissues (Shaw et al. 2006), or the distribution of carbon 
isotopes in lake sediments (Barker et al. 2001). We use a 
polynomial regression in this paper to obtain the T-S rela-
tionship of water mass in oceanography.

The general polynomial regression model form is de-
picted below.
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where the xi’s are the input variable samples and the yi’s are 
the output variable samples, βp’s are the regression coef-
ficients, and εi’s are the error terms. The above equations 
form a set of linear equations for parameter βp’s, which can 
be further represented in the matrix-vector form as follows 
(Cetisli and Kalkan 2011).
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Fig. 2. Cruise tracks of R/V Ocean Researcher I, II, and III, provided by the Ocean Data Bank of Taiwan’s Ministry of Science and Technology 
operated by the Institute of Oceanography, National Taiwan University.

http://www.odb.ntu.edu.tw
http://www.odb.ntu.edu.tw
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Or alternatively,

y X fb= +  (3)

When the training samples {(xi, yi)} are given the optimal 
β that minimizes the square errors 2f  can then be solved 
as below.

* ( )X X X yT T1b = -  (4)

In statistics the mean squared error (MSE) signifies the ex-
pected difference between the value of an estimator ( yil ) and 
the true value (yi) of the quantity being estimated, and can 
be used to indicate prediction accuracy. The MSE is zero if 
the yi and yil  values are identical (Mielke et al. 1996). With 
the coefficients β* for the polynomial the MSE can be com-
puted as below,

( ) , *n y y y X1MSE i ii
n 2
1 b= - == l l/  (5) 

The regression function in Eq. (1) can be used to represent 
the T-S relationship for a water mass where the temperature 
is the input variable x and the salinity is the output variable 
y. Given a set of training samples consisting of pairs of tem-

perature and salinity values, i.e., {(xi, yi)}, the regression co-
efficients β can be computed and the derived polynomial can 
then be used to predict the salinity for a given temperature.

The choice of regression polynomial degree depends 
on the computational cost and available space. According 
to earlier research by Teague et al. (1990), the polynomial 
degree can be chosen as five for the top and middle salinity 
models and seven for the middle temperature model. We 
make use of the JSXGraph library, which is an open-source 
client-side web library for displaying interactive mathemat-
ics and drawings in a web browser, to generate the regres-
sion curve for an assigned degree. Examples of regression 
analysis for a set of data from the Kuroshio dataset with 
polynomials of degree 3 - 5 are shown in Figs. 3a - c, re-
spectively, in which the points are the training samples and 
the solid green curve is the derived polynomial. The MSE 
with respect to the polynomial degree is further shown in 
Fig. 3d. As can be seen in Fig. 3d the MSE decreases as the 
degree increases and the estimation error is low when the 
degree is larger than 4. To simplify the analysis the degree 
of the polynomial in this paper is set at 5.

2.4 Distance Measure

In order to automatically compare the T-S characteris-
tics of water masses the distance measured between two T-S 

Fig. 3. Examples of regression analysis for a set of T-S data from the Kuroshio dataset with polynomials of (a) degree 3 (b) degree 4 (c) degree 5, 
respectively. The points in each figure are the training samples, and the solid green curve is the derived polynomial. (d) Further shows the mean 
square error (MSE) with respect to the degree.

(a) (b)

(c) (d)
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characteristics needs to be defined beforehand. Euclidean 
distance is a classic and popular distance measure in math-
ematics (Patel and Mehta 2012). Suppose p = (p1, p2, …, pn) 
and q = (q1, q2, …, qn) are two vectors in an n-dimensional 
space. The Euclidean distance between the two vectors, p 
and q, is then

( , ) ( , ) ( )d p q d q p p qi ii
n 2
1

2
1

= = -=6 @/  .(6)

Equation (6) can be generalized to measure the distance 
between two T-S characteristics, provided that the T-S 
characteristics such as those in Fig. 3 can be converted into 
n-tuple vectors. This can be achieved by sampling the sa-
linity-temperature polynomial at certain temperatures. As-
sume that the regression function is s = f(t; β), where t is the 
temperature, s is the salinity, and β is the coefficient of the 
polynomial. An n-dimensional vector s = (s1, s2, …, sn) can 
then be obtained by sampling the polynomial function f(t; β) 
uniformly as below,
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where tmin and tmax are respectively the lowest and the high-
est temperatures for the observed data and ∆t is the space 
between any two adjacent temperatures. Accordingly, every 
regression polynomial (T-S characteristic) can be represent-
ed as an n-dimensional vector and the distance between two 
polynomials can be computed based on Eq. (7). With the 
distance measure a set of water masses can be compared au-
tomatically based on their T-S characteristics. It should be 
noticed, however, the meaning of distance is opposite to that 
of similarity. The smaller the distance is, the more similar 
the two T-S characteristics are. Therefore, for a water mass 
at the target location, finding the most similar water mass 
is in fact equivalent to finding those geographical locations 
whose T-S characteristics are closest to the T-S characteris-
tic of the target location.

3. SYSTEM DESIGN

In the past decade ODB information systems were usu-
ally designed with some proprietary structure and focused 
on very limited functions. This resulted in a communica-
tion problem between the user and the developer, with high 
maintenance costs due to the lack of flexibility in the sys-
tem architecture. New strategies for system design have 
been recently proposed to meet the demands for flexibil-
ity and adaptability, which triggered new ways of system 
implementation. SOA is such a solution that can facilitate 
the integration of various applications implemented with 
heterogeneous technologies as long as these applications 

release their services in the form of standardized interfaces 
(Guo et al. 2010). In SOA the application logics contained 
in various systems across the organization are exposed as 
services that can then be consumed by other applications 
(Chua and Lee 2009). This can help organizations mitigate 
the problems of legacy systems and increase the interoper-
ability, reusability and flexibility while reducing the cost of 
development and maintenance. In addition, SOA can modu-
larize the system to be extensible, scalable and compatible 
for future demands. Therefore, this is potentially a good 
solution for the ODB information system. In the system de-
sign that follows SOA is adopted as a reference model for 
the proposed ODB system.

3.1 System Architecture

According to SOA, the ODB information system can 
be divided into four layers, as shown in Fig. 4. Initially, ma-
rine observation data are collected automatically by the in-
struments on the cruises and stored as raw text files that are 
less structured and difficult to search. In the data layer the 
raw data are parsed, converted into the structural form and 
stored in the relational database for more efficient searches. 
The data in the ODB system includes Conductivity Tem-
perature Depth (CTD) data, Acoustic Doppler Current Pro-
filer (ADCP) data, EK500 acoustic image data, chemical 
data and biological data, as can be seen on the left hand side 
of Fig. 4. However, the amount of ocean data is too huge 
to be used efficiently, so the converted data might need to 
be further processed to obtain more aggregated or analyti-
cal data through statistical computation, data aggregation, 
regression analysis and so on. The Analytical Ocean Data 
shown in Fig. 4 is a type of analytical data derived from 
polynomial regression.

In the service component layer software components 
for accessing the data sources produced in the data layer can 
be built in order to provide basic CRUD (create, read, up-
date, and delete) operations for the data tables. These com-
ponents are exported as web services in the service layer, 
which can be discovered, described and accessed based on 
XML and standard Web protocols over intranets, extranets 
and the Internet (Alonso et al. 2004). The service layer can 
also provide interoperability among multiple components 
to accomplish more complex or integrated business logics 
when necessary. In the ODB system web services from four 
domains are implemented, including physical oceanography 
(PHY), marine geology geophysics (MGG), marine biology 
(BIO) and chemical oceanography (CHEM). In the applica-
tion UI layer the web clients are devised to consume the 
services and interact with the user through such devices 
as desktop, tablet or mobile phone. The web client of the 
PHY domain finally consumes the PHY service using such 
web technologies as AJAX, JSXGraphic library and Google 
Maps API, to provide responsive interaction with the user.
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3.2 Prototype Implementation

PHY service implementation is taken as an example 
in this section to illustrate how the SOA reference model 
in Fig. 4 is realized in the ODB system. The processes for 
implementing the PHY service are shown in Fig. 5 and pre-
sented in the following sections.

3.2.1 Data Conversion

As depicted in Fig. 5, the raw ocean data from ship-
board were first parsed by the applications and then merged 
into the CTD database after quality control processes were 
applied. A few primary CTD data sample records in the da-
tabase are displayed in Table 1. It can be seen from Table 
1 that each record contains information on the salinity, 
temperature, time, and location in which the record was 
tracked. There are more than 20 million CTD records in the 
database, resulting in huge storage volume, poor indexing 
performance and longer search delay. Data aggregation is 
therefore necessary for dealing with such problems.

3.2.2 Data Aggregation

The primary CTD data are aggregated according to their 
geographical locations to increase the computational effi-
ciency for TS characteristics, as shown in Fig. 5. The geo-
graphical area near Taiwan between 10° - 30° latitude and 
110° - 130° longitude was uniformly divided into 15 × 15 
minute squares, called grids. Each CTD record was then as-
signed uniquely to a grid according to its altitude and longi-
tude, with the CTD data acquired for every grid. A few ag-
gregated CTD data sample records with the same grid Centre 
ID are shown in Table 2. As can be seen from this table, the 
first two columns signify the longitude and the latitude of 

the observation location, respectively, while the third column 
signifies the observation depth. Columns 4 and 5 are the ob-
served salinity and temperature, respectively, while column 
6 contains the longitude and latitude of the grid centre that a 
record was assigned. Through data aggregation, 20 million 
CTD data records in ODB can be distributed into 1328 grids, 
and the aggregated data for every grid can further be used 
to compute the corresponding T-S characteristics through re-
gression. Data aggregation is an effective pre-processing step 
for reducing regression computations based on the assump-
tion that the T-S characteristic within a grid is stable.

3.2.3 Regression Analysis

With the aggregated data for every grid, the corre-
sponding regression coefficients can be computed accord-
ing to Eq. (4) depicted in section 2.3, and then stored in the 
analytical ocean data. Table 3 shows a few analytical ocean 
data sample records. In Table 3 the column Centre ID is the 
grid centre, while columns f0 - f5 are the coefficients of a 
regression polynomial of degree 5. The regression coeffi-
cients are used to produce the T-S characteristic for a grid. 
The distance between the T-S characteristics of two grids 
can be computed using Eq. (6) in section 2.4.

It is noteworthy that conventional T-S relationship dis-
plays the salinity on the x axis and the temperature on the 
y axis, as shown in Fig. 6a, where y is not a function of x 
since a value of x might correspond to multiple values of y. 
The problem can be solved using the generalized nonlinear 
regression in the form of g(x , y) = 0, such as the quadratic 
equation shown in Fig. 6b. However, to simplify the compu-
tation, the coordinates x and y for each record are swapped 
such that the salinity-temperature relationship, as shown in 
Fig. 6c, can be obtained through polynomial regression, as 
depicted in Fig. 6d.

Fig. 4. The ODB information system architecture using SOA as the reference model.
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Fig. 5. Processes for the implementation of PHY service.

Cruise_ID Cast_ID Local_Time Longitude_degree Latitude_degree Depth Salinity Temperature

010782 D6D1 2006-02-25 16:11:10 117754333 21488000 3 34.313 24.943

010782 D6D1 2006-02-25 16:11:10 117754333 21488000 4 34.313 24.943

010782 D6D1 2006-02-25 16:11:10 117754333 21488000 5 34.313 24.942

010782 D6D1 2006-02-25 16:11:10 117754333 21488000 6 34.313 24.942

010782 S7D1 2006-02-24 22:22:22 117263400 21595667 4 34.276 24.740

010782 S7D1 2006-02-24 22:22:22 117263400 21595667 5 34.277 24.740

010782 S7D1 2006-02-24 22:22:22 117263400 21595667 6 34.277 24.739

Table 1. Sample records of primary CTD data.

Longitude Latitude Depth Salinity Temperature CentreID

117.3394 21.29633 2 33.344 29.651 117.25_21.25

117.3394 21.29633 3 33.344 29.61 117.25_21.25

117.3394 21.29633 4 33.343 29.596 117.25_21.25

117.3394 21.29633 5 33.342 29.586 117.25_21.25

117.3394 21.29633 6 33.343 29.566 117.25_21.25

117.3394 21.29633 7 33.343 29.562 117.25_21.25

117.3394 21.29633 8 33.344 29.554 117.25_21.25

117.3394 21.29633 9 33.343 29.546 117.25_21.25

117.3394 21.29633 10 33.344 29.54 117.25_21.25

Table 2. The sample records of aggregated CTD data.
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3.2.4 Web Services and Web Client

The analytical ocean data produced in regression anal-
ysis can be further exported, either directly as a primary web 
service for retrieving the T-S characteristic at an assigned 
grid, or indirectly as an analytic web service for perform-

ing large-scale analysis, as shown in Fig. 5. In the primary 
web service the T-S characteristic is obtained based on the 
regression coefficients for an assigned grid. In the analyti-
cal web service, on the other hand, the distances between 
a reference grid and the other grids are computed accord-
ing to the T-S characteristics obtained from the regression 

CentreID f0 f1 f2 f3 f4 f5

117.25_21 38.53432 -1.27061 0.14652 -0.00797 0.000214 -2.37E-06

117.25_21.25 40.27099 -1.91005 0.235324 -0.01375 0.000389 -4.36E-06

117.25_21.5 70.47117 -10.3587 1.157567 -0.06297 0.001678 -1.76E-05

117.25_21.75 53.17164 -5.27742 0.574457 -0.0303 0.000785 -8.10E-06

117.25_22 -677.386 163.8514 -14.9604 0.677293 -0.0152 0.000135

117.25_22.25 -2586.52 590.4141 -52.8979 2.355771 -0.05214 0.000459

117.25_22.5 12063.78 -2440.18 197.1876 -7.93509 0.159036 -0.00127

117.25_22.75 -66638.4 13460.95 -1084.17 43.54345 -0.87207 6.97E-03

117.25_23 828.9836 -144.322 10.43299 -0.37599 0.006779 -4.92E-05

117.25_23.25 23197.14 -2994.93 119.0585 -0.33716 -0.07426 0.001185

Table 3. Sample records of analytical ocean data containing the coefficients of regression polynomials.

Fig. 6. T-S relationship with respect to regression model. Conventional T-S relationship displays the salinity on the x axis and the temperature on the 
y axis as shown in (a), where y is not a function of x. The relationship can be solved with nonlinear regression in the form of g(x, y) = 0, such as the 
quadratic equation shown in (b). To simplify the computation, the coordinates x and y for each record are swapped such that the salinity-temperature 
relationship, as shown in (c), can be obtained through polynomial regression, as depicted in (d).

(a)

(c)

(b)

(d)
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coefficients in the analytical ocean data. The distances for 
all grids with respect to the reference grid are replied to the 
client for visual presentation to the user.

The steps for computing the distances are displayed in 
Fig. 7. Assume that we have a set of temperature and salin-
ity data for a reference grid, as shown in Fig. 7b. The lowest 
and highest temperatures, tmin and tmax, can then be obtained 
from the data. The range between tmin and tmax is then uni-
formly divided according to Eq. (7) such that a vector of 
salinities sampled at equally spaced temperatures for the 
reference grid can be produced, as shown in Fig. 7a. Simi-
larly, the vectors for the other grids can also be obtained, 
and accordingly the Euclidean distances denoting the dis-
similarities between these grids and the reference grid can 
be computed based on Eq. (6). The distances can be further 
encoded with gradient colors such that similar water masses 
for the reference grid can be easily observed. Figures 7c - f 
display the T-S characteristics for four grids with the cor-
responding encoding colors. It can be observed that the T-S 
characteristic in Fig. 7c is the most similar (with low dis-

tance) to that of the reference grid, so this grid is encoded 
with dark orange. The T-S characteristic in Fig. 7f is least 
similar (with high distance) to that of the reference grid, 
so this grid is encoded with light pink. With the encoding 
colors corresponding to all grids, similar water masses for 
the reference grid can be visualized geographically using a 
similar map that will be shown later.

The PHY web services can be integrated to provide 
an intuitive visualization interface which the user can inter-
act with flexibly to explore the T-S characteristics of water 
masses. The web client was built with the Google Maps pub-
lic API, which is simple, pre-styled, open and interoperable 
(Freifeld et al. 2008). Figure 8 displays a few snapshots of 
the user interface for the ODB system for a query dataset. 
Figure 8a is the input field containing the query CTD data 
of a reference grid in the Kuroshio region. Figure 8b is the 
corresponding T-S diagram and Fig. 8c is the similarity map 
of that grid. The setting as shown in Fig. 8a is used to filter 
the CTD data based on season or range of years. From the 
similarity map in Fig. 8c, it is quite easy to track how the 

(a)

(d)

(b)

(e)

(c)

(f)

Fig. 7. Computation of distances and color coding. A set of temperature-salinity data for a reference grid is shown in (b). The vectors for all the grids 
can be obtained by sampling the polynomial. Accordingly, the distances between these grids and the reference grid can be computed and encoded 
with gradient colors such that similar water masses for the reference grid can be tracked. (c) through (f) display the T-S characteristics for four grids 
with the corresponding encoding colors.
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(a) (b)

(c)

Fig. 8. Visualization interface for exploring T-S relationships. (a) is the input field of a query dataset in the Kuroshio region, area (b) is the T-S 
diagram of that dataset, and area (c) is the similarity map for the query. The setting on the bottom of (a) is for filtering the CTD data so as to see how 
the T-S characteristic and similarity map varies with respect to the season or the range of years.

characteristic of water masses varies with respect to the loca-
tion. In addition, the system provides an interactive interface 
for querying the similarity map, as shown in Fig. 9. The user 
can click a grid on the similarity map displayed in Fig. 9a to 
see the corresponding T-S diagram, as shown in Fig. 9b, and 
compare it with that of the reference grid. The white cross in 
Fig. 9a is the location of the Kuroshio region in the reference 
grid. The red curve in Fig. 9b is the average value at the same 
depth in that grid. The information about the filter setting 
(season or range of year) and sample size (Data Count = 1734)  
is displayed on the top of Fig. 9b. Moreover, to estimate the 
appropriate sample size that can achieve acceptable qual-
ity in polynomial regression, the MSE with respect to the 
sample size is further plotted in Fig. 10. As can be seen from 
this figure, 200 is an appropriate sample size threshold for 
obtaining acceptable quality of regression. Therefore, those 
grids with the number of samples below the threshold will 
not be displayed.

In the next section, the similarity map will be com-
pared with other ocean researches, while the seasonal and 
multi-year changes for the T-S characteristic or similarity 

map will be further discussed.

4. DISCUSSION

In the previous sections an approach comparing and 
discovering similar water masses based on T-S character-
istic was proposed and realized on a visualization tool of 
ODB system. To verify the validity of this approach, the 
result from the Kuroshio example was compared with ear-
lier studies of the Kuroshio path (Liang et al. 2008) and the 
Kuroshio path with an ADCP presentation from ODB, as 
shown in Figs. 11a - c, respectively. Figure 11a is the result 
of this study using the Kuroshio example data as input. Fig-
ure 11b is the climatological temperature figure and daily 
drifting trajectory at 30 m depth which shows the Kurosh-
io flows northward along the east coast of Taiwan (ODB 
2010). Figure 11c is the Kuroshio path with an ADCP pre-
sentation from ODB. The Kuroshio paths in Fig. 11b or c  
coincide highly with the dark orange region in Fig. 11a, 
which is the result of the proposed approach. It implies that 
the distance measured based on the polynomial regression 
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function is successful for querying similar water masses in a 
wide range area. The result is consistent with those obtained 
from earlier researches. The proposed approach effectively 
reduces the amount of computations through data aggrega-
tion without losing the precision and facilitates the compari-
son of water masses through T-S characteristics sampling 
without degrading their discriminating capabilities. The 
ODB system has been deployed as a web site for promoting 
joint marine research, and is available publicly at the URL: 
http://app05.odb.ntu.edu.tw/phy/BlockQry.aspx.

In addition, seasonal variation was determined an im-
portant feature of current flow near Taiwan in earlier studies 
by Tang et al. 2000 and Jan et al. 2002. For comparison, 
the CTD data are aggregated individually according to the 
seasons in the data aggregation process and the T-S relation-

ships for four seasons are shown in Fig. 12. As can be seen 
from this figure, seasonal change is prominent for the Kuro-
shio nearby Taiwan. In addition, the seasonal change in the 
similarity map for two reference grids, one in the Kuroshio 
region nearby Taiwan and the other in the South China Sea, 
are shown in Figs. 13 and 14, respectively. The difference 
in the patterns in different seasons could be helpful for illus-
trating the Kuroshio Intrusion phenomenon into the South 
China Sea in fall (Farris and Wimbush 1996). Similarly, 
the range of years can be set to filter the CTD data in the 
Kuroshio region, as shown in Fig. 8a, to obtain similarity 
maps for a long period of time. Four multi-year ranges from 
1985 - 2010 are set for aggregating the CTD data, with the 
corresponding similarity maps displayed in Fig. 15. This 
figure shows that the Kuroshio patterns are broadly similar 

Fig. 9. Interactive query interface. The user can click a grid in (a) to see the corresponding T-S diagram, as shown in (b). On the similarity map, the 
white cross is the reference grid and the red curve is the T-S relationship of the grid. The information about filter setting (season or range of years) 
and sample size (Data Count = 1734) is shown on the top of (b).

(a) (b)

Fig. 10. The mean squared error (MSE) with respect to the sample size. 200 is an appropriate sample size threshold that can achieve acceptable 
quality in polynomial regression.

http://app05.odb.ntu.edu.tw/phy/BlockQry.aspx
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Fig. 11. Comparison of the Kuroshio pat-
terns obtained from various researches. (a) 
is the result of this study with the Kurosh-
io example dataset. (b) is the climatologi-
cal temperature figure and daily drifting 
trajectory at 30 m depth which shows the 
Kuroshio flows northward along the east 
coast of Taiwan (ODB 2010). (c) is the 
Kuroshio path with an ADCP presenta-
tion from ODB. The Kuroshio paths in (b) 
or (c) highly coincide highly with the dark 
orange region in (a), which is the result of 
the proposed approach.

(a)

(c)

(b)

Fig. 12. Seasonal change of T-S characteristic for the Kuroshio nearby Taiwan.
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Fig. 13. Seasonal change of similarity map for the Kuroshio nearby Taiwan.

Fig. 14. Seasonal change of similarity map in the South China Sea. The differences in the patterns in different seasons could be helpful in illustrating 
the phenomenon of Kuroshio Intrusion into the South China Sea in fall (Farris and Wimbush 1996).
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for many years based on long-term observation. Notice that 
here the multi-year range is around 5 years in order to aggre-
gate sufficient CTD data for computing T-S characteristics 
because the amount of data varies drastically year to year. 
Since this tool facilitates the comparison of water masses 
across seasons, multi-year ranges, or locations, explorations 
such as a long-term geographical change in T-S characteris-
tic can be achieved efficiently, but the knowledge discovery 
based on them becomes more feasible.

5. CONCLUSIONS

This paper presented the T-S characteristic is modelled 
as a polynomial function with coefficients estimated using 
statistical regression. With such representation, the distance 
between two T-S characteristics could be measured and the 
search and comparison of similar water masses can then be 
conducted automatically and efficiently. This analysis ap-
proach can search geographic locations with similar T-S 
characteristics and also track water masses with similar T-S 
characteristics for a wide range area. In addition, the change 
in T-S characteristic across seasons or multi-year ranges can 
be easily observed by setting the filtering criteria. The valid-
ity of the proposed approach was successfully verified using 
the Kuroshio dataset. This approach can obtain the Kuro-
shio pattern that coincides highly with those obtained from 
earlier researches. This implies that the data aggregation us-
ing grids and the simplification for comparing regression 
polynomials can effectively reduce the computation with-

out largely degrading the discriminating capabilities of T-S 
characteristics in water masses.

Moreover, with SOA as a reference model, the ODB 
information system can achieve good reusability and flex-
ibility for integration and provide a visualization interface 
that can interact responsively with the user. This can effec-
tively facilitate the knowledge exploration and discovery 
process. An implementation case using PHY service was 
used as an example to illustrate how primary and analytical 
data can be flexibly exported as web services and easily in-
tegrated based on this architecture. The layered SOA makes 
it easier to reuse the modules from various data sources to 
fulfil the information needs of different users, including 
primary data, statistical data and analytical data. This ODB 
information system is flexible and adaptable for future deci-
sion supporting systems for marine research and can pro-
mote joint research across domains. 
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