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1. IntroductIon

Astronomical tides, which are generated by the gravi-
tational forces of the moon and the sun, and the centrifu-
gal force due to the rotation of the earth, generally account 
for 75 - 80% of water level variability in the open ocean 
(Molines et al. 1994). The nonlinear effects of tide gauge 
measured sea level in coastal and enclosed or semi-enclosed 
basins areas may differ from the astronomical constituents 
due to meteorological forcing, tidal interactions, and river 
outflow. For example, tides account for only about 50% of 
water level variability at Pensacola, Florida ( Zetler et al. 
1979), and about 40% at Baltimore, Maryland ( Frison et al. 
1999). Because of the magnitude of astronomical forcing, 
analysis of water levels has traditionally emphasized linear 
methods to decompose water levels into “tides” and other 
components. The amplitudes and phases of the tidal constit-
uents are then determined on the basis of known periods that 
are driven by the astronomical motions of the earth, moon, 
and sun. However, measured water levels in coastal and es-
tuarine areas may differ significantly from the astronomical 
constituents due to nonlinear effects that include meteoro-

logical forcing, tidal interactions, and river outflow. Tide 
analysis and classification techniques in common use are 
least squares analysis (e.g., Godin 1972), response analysis 
(e.g., Munk and Cartwright 1966; Cartwright et al. 1969), 
Fourier analysis (e.g., Godin 1972) and classification using 
ratios of tidal constituents (e.g., Defant 1961). Common to 
all of these methods is the assumption that measured water 
levels are a simple superposition of astronomical tides and 
other components. However, even these traditional methods 
acknowledge the importance of the nonlinear effects by con-
sidering the harmonics of the astronomical tidal frequencies 
(e.g., Schureman 1958; Godin 1972). Modern tidal research, 
such as by Munk and Cartwright (1966), recognizes the im-
portance of nonlinearities and the role of the inherently non-
linear Navier-Stokes equations in water level dynamics.

Part of sea level signal is due to varying barometric 
pressure, temperature, salinity and other factors, but this 
is small and usually of less importance except when con-
sidering seasonal variation of mean sea level. Damaging to 
claims that the sun causes periodicities in temperature, or 

An Adaptive neuro-Fuzzy Inference System for Sea Level Prediction  
considering tide-Generating Forces and oceanic thermal Expansion

Li-Ching Lin1, * and Hsien-Kuo Chang1

1 Department of Civil Engineering, National Chiao Tung University, Hsinchu, Taiwan, ROC

Received 15 November 2006, accepted 8 June 2007

AbStrAct

The paper presents an adaptive neuro fuzzy inference system for predicting sea level considering tide-generating forces 
and oceanic thermal expansion assuming a model of sea level dependence on sea surface temperature. The proposed model 
named TGFT-FN (tide-Generating Forces considering sea surface temperature and Fuzzy neuro-network system) is ap-
plied to predict tides at five tide gauge sites located in Taiwan and has the root mean square of error of about 7.3 - 15.0 cm. 
The capability of TGFT-FN model is superior in sea level prediction than the previous TGF-NN model developed by Chang 
and Lin (2006) that considers the tide-generating forces only. The TGFT-FN model is employed to train and predict the sea 
level of Hua-Lien station, and is also appropriate for the same prediction at the tide gauge sites next to Hua-Lien station.

Key words: Adaptive neuro-fuzzy inference system, Tide-generating force, Sea surface temperature
Citation: Lin, L. C., and H. K. Chang, 2008: An adaptive neuro-fuzzy inference system for sea level prediction considering tide-generating forces and oceanic 
thermal expansion. Terr. Atmos. Ocean. Sci., 19, 163-172, doi: 10.3319/TAO.2008.19.1-2.163(SA)

Terr. Atmos. Ocean. Sci., Vol. 19, No. 1-2, 163-172, April 2008



Li-Ching Lin & Hsien-Kuo Chang

other aspects of weather, are reported interruptions in solar-
weather correlations, most conspicuous during the 1920s. 
Thermal tides are a variation in atmospheric pressure due 
to the diurnal differential heating of the atmosphere by the 
sun (e.g., Volkov and van Aken 2004). Munk and Cart-
wright (1966) first investigated the importance of thermal 
tides. The results show that the annual variation of sea level, 
which is the predominate signal in sea level data recorded 
for example by tide gauges, is highly related to the thermal 
radiation of the sun.

The harmonic method developed by Darwin (1907) 
assumes that the tides can be regarded as superposition of 
different harmonics whose frequencies are known from as-
tronomy (Doodson 1921; Desai 1996). The information can 
then be used to provide reliable predictions for future tides 
at the same point. The harmonic method has been widely 
used due to its remarkably good accuracy. The length of 
record needed to extract different components depends pri-
marily on the closeness in frequency of the components 
that are to be extracted and on the lowest frequency of the 
components chosen. Normally, 369 days of hourly data at 
a point are needed to extract 20 to 30 constituents with ad-
equate separation of closely spaced constituents using the 
least squares method. 

Artificial Neural Network (ANN) has high functioning 
with fast computation and a considerable memory to solve 
the problems concerning extremely nonlinear interactions 
and complex effective variables, for particular application 
of ANN to tidal prediction (Vaziri 1997; Deo and Chaud-
hari 1998; Tsai and Lee 1999; Kumar and Minocha 2001; 
Mandal 2001; Medina 2001; Walton and Garcia 2001; Lee 
et al. 2002; Lee and Jeng 2002; El-Rabbany and El-Diasty 
2003; Lee 2004; Rajasekaran et al. 2006). Chang and Lin 
(2006) use tide-generating forces (TGF) of astronomy as in-
puts in a back-propagation NN model, called the TGF-NN 
model, to establish the valid relationship between tides and 
tide-generating forces. The TGF-NN model was examined 
to be as efficient at a single site as the harmonic method. 
The extended application of the TGF-NN model at some 
tide gauge sites next to an original interest site such as the 
NAO.99b numerical model by Matsumoto et al. (2000) re-
veals accurately simulated multi-point tides.

In the past, the fuzzy inference system (FIS) has been 
used to predict uncertain systems and its application does 
not require knowledge of the underlying physical process-
es as preconditions. Therefore the FIS has been applied to 
different subjects, such as reservoir operation (Russel and 
Camplell 1996; Shrestha et al. 1996; Dubrovin et al. 2002; 
Ponnambalam et al. 2003; Akyilmaz and Kutterer 2004), 
and wave study (Kazeminezhad et al. 2005; Őzger and Sen 
2007). This paper employs an adaptive-network- based FIS 
(ANFIS), which combines ANN and FIS, to predict sea lev-
el and tides. The ANFIS-based and ANN-based predictions 
on tides are subsequently analyzed and compared.

2. KEy FActorS on tIdES
2.1 the theory of tide-Generating Potential

The forces that are of importance in the tides of the 
oceans are the gravitational forces, Fa, of the moon and the 
sun, and the centrifugal force, Fc, due to the movement of 
the earth in its orbit. These two tide generating forces are 
depicted in Fig. 1. Both the attractive force and centrifugal 
force can be decomposed into radial and tangential compo-
nents. Based on the theory of tidal potential, the tidal dis-
placement of the oceanic free surface due to the moon and 
the sun is then expressed as (Lamb 1932; Chang and Lin 
2006): 
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where G ≈ 6.67 × 10-11 Nm kg-2 is the coefficient of univer-
sal gravitation; R ≈ 6.371 × 106 m is the mean radius of the 
earth; D is the distance between the earth’s center and the 
center of the body; t  is the distance between the point X 
and the center of an attracting celestial body; M is the mass 
of the body; g is the acceleration due to the gravity of the 
earth; the subscripts of m and s denote the physical quantity 
corresponding to the moon and the sun, respectively. 

A difference between the equilibrium tides computed 
by Eq. (1) and observed tides at near-shore is described in 
numerous papers. The difference between equilibrium tides 
and realistic tides may result from non-uniform water depth 
around the ellipse-like earth and nonlinear interactions be-
tween tidal components. Such factors are not considered in 
the linear astronomical tide theory. The difference is ob-
served to be distinguishable by an artificial neural network 
that has an advantage of auto-learning the relationship be-
tween inputs and outputs. For this case inputs are equilib-
rium tides and outputs are observed tides.

Fig. 1. Geometry of gravitational force and centrifugal force on a point 
X at the surface of the earth.
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2.2 Annual Sea Level Signal due to thermal Expansion

Various factors affect the volume or mass of the ocean, 
leading to long-term changes in sea level. The sea-level 
change is the change in sea level due to thermal expansion 
and salinity contraction (volume), and the addition of mass 
due to the melting of glaciers and polar ice sheets (mass). 
In addition to longer period variations (decadal or longer), 
three general modes of the sea level variability present in 
the ocean: (1) inter-annual change - the change, which may 
have an irregular oscillating nature as well as a linear trend; 
(2) annual signal, which is a result of ocean-atmosphere in-
teractions at annual frequencies in terms of solar radiation 
changes, heat fluxes, wind forcing etc.; (3) high-frequency 
changes (periods less than 1 year) induced by direct wind 
forcing and current meandering resulting in eddies genera-
tion (periods 10 to 100 days). Another type of oscillation 
at periods longer than 70 days include the propagations of 
Kevin (eastward) and Rossby (westward) waves across the 
ocean basins (e.g., Volkov and van Aken 2004).

Tides, atmospheric, and steric (thermal and salinity) ef-
fects, and other oceanographic effects are part of the signals 
in the sea level measured by long-term tide gauges, such 
as the Hua-Lien tide gauge at the eastern coast of Taiwan. 
Here we ignore the salinity or the haleosteric effect of the 
ocean, as their effect is assumed small, e.g., (Matsumoto et 
al. 2006). The atmospheric effect assuming inverted baro-
metric (IB) is not removed from the tide gauge sea level, 
but assumed small. Finally, the thermosteric effect or the 
thermal expansion of the sea level signal is modeled using 
a correlation between sea level and sea surface temperature, 
e.g., also used by Matsumoto et al. 2006 in their ocean bot-
tom pressure analysis of the sea level signals.

The variations of sea level and thermal expansion 
(modeled assuming a dependence on sea surface tempera-
ture only) at the Hua-Lien (HL) tide gauge station between 
year 2001 and 2002 are demonstrated from a comparison 
of the 720-hour moving average, as illustrated in Fig. 2 and 
the 720-hour moving average sea level and SST are applied 
to calculate the power spectrum density (PSD) using four 
years of data, as illustrated in Fig. 3. Figure 3 shows that 
the peak of the power spectrum between average sea level  
and SST in the 8192 hours is about the annual period. The 
correlation coefficient value of them is 0.68, and the Fig. 2  
shows that the time series of average sea level and SST rep-
resent a similar trend and a quasi period of about one-year. 
The correlation coefficient between the 720-hourly aver-
aged tide at Hua-Lien and SST at Tou-Cheng (TC), Su-Ao 
(SA), Cheng-Gong (CG), and Lan-Yu (LY), of which the 
positions are demonstrated in Fig. 4, are 0.71, 0.73, 0.55, 
and 0.60, respectively. As described above, high correla-
tion coefficients indicate some relationship between the 
720-hourly averaged sea level and sea surface temperature. 
Thus the relationship can be established by a neuron-fuzzy 
method and estimated by the developed model. 

Fig. 3. The power spectrum density calculated for averaged sea level 
and sea surface temperature using four years of data.

Fig. 2. Long-term variations of averaged sea level (solid line) and sea 
surface temperature (dashed line) at Hua-Lien for years 2001 and 2002 
using a 720-hour moving average. 

Fig. 4. Location of five tide gauges in Taiwan.
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Tou-Cheng and Su-Ao are separated in distance by 
about 106 and 72 km, respectively, from and north of the 
Hua-Lien tide gauge. Cheng-Gong and Lan-Yu are sepa-
rated in distance about 102 and 214 km, respectively, from 
and south of the Hua-Lien tide gauge. The Lan-Yu station 
is located at a small island away from eastern Taiwan by a 
distance of about 78 km. Observed sea level and sea surface 
temperature at these five stations are applied to predicting 
the sea level signal in the developed model.

3. ModEL conStructIon
3.1 brief Introduction to AnFIS

A fuzzy inference system is a frame work, which simu-
lates the behavior of a given system as “IF-THEN” rules 
through knowledge of experts or past available data of the 
system. It is a process of how to map a set of given input 
variables to an output variable based on fuzzy logic theory. 
The FIS using neural networks has a great advantage in that 
it can use neural network learning capability, but can avoid 
the rule-matching time of an inference engine in the tradi-
tional fuzzy logic system. Functionally, there are almost no 
constraints on the node functions of an adaptive network 
except piecewise differentiability. Structurally, the only 
limitation on network configuration is that it should be of 
feedforward type. Due to this minimal restriction, the adap-
tive network’s applications are immediate and immense in 
various areas. The learning algorithm tunes all the modifica-
tion as adjusting of the parameters of the membership func-
tions of the input-output variables. ANFIS combines the ad-
vantages of both neural networks (e.g., learning capacities, 
optimization capacities, and connectionist structures) and 
FIS (e.g., human like “IF-THEN”: rule thinking and ease of 
incorporating expert knowledge). A class of adaptive net-
works is briefly introduced as follows (see Jang 1993):

A Sugeno FIS under consideration defines the conse-
quent variable of each rule as a linear combination of in-
put variables and has a final output as the weighted average 
of each rule’s output. For ex-
ample, a Sugeno FIS including 
two inputs and one output and 
two fuzzy rules can be written 
as follows: 

 
Rule 1: If x is A1 and y is B1 then 
f1 = p1 · x + q1 · y + r1

Rule 2: If x is A2 and y is B2 then 
f2 = p2 · x + q2 · y + r2

where pi , qi, and ri are the con-
sequent parameters of the ith 
rule. Ai and Bi are the linguistic 
labels which are represented by 

fuzzy sets. The node functions in the same layer are of the 
same function family as described below: The architecture 
of ANFIS including five layers is shown in Fig. 5. 

Every node in the first layer is a square node with a 
node function. ( )O xi A

1
in=  where x is the input to node i. 

In other words, O i
1  is the membership function of Ai and it 

specifies the degree to which the given x satisfies the quan-
tifier Ai. Usually ( )xAin  is chosen to be bell-shaped with 
maximum equal to 1 and minimum equal to 0, such as the 
generalized bell function (2):
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where ai, bi, and ci is the parameter set. As the values of 
these parameters change, the bell-shaped functions vary ac-
cordingly, exhibiting various forms of membership function 
on linguistic label Ai. Parameters in this layer are referred to 
as premise parameters.

Every node in the second layer labeled Π is a circle 
node, which performs a fuzzy intersection operation on the 
incoming signals from the first layer and delivers the result 
as the firing strength of a rule defined by the fuzzy subsets 
Ai and Bi as follows:
 

( ) ( ) ,w x y i 1 2i A Bi i/n n= =        (3)
 

where ( )xAin  and ( )yBin  are membership functions of x and 
y in fuzzy sets Ai and Bi. “/” denotes a fuzzy T-norm op-
erator which is a function that describes a superset of fuzzy 
intersection (AND) operators, including minimum or alge-
braic product. 

Every node in layer 3 is a circle node labeled N. 
The ith node calculates the ratio of the ith rule’s firing 
strength to the sum of all rules’ firing strengths as follows: 

Fig. 5. The architecture of ANFIS.
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,O w w w
w i 1 2i i
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1 2
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For convenience, output of this layer will be 
called normalized firing strengths. Every node i 
in layer 4 is a square node with a node function:
 

)O w wi i i i i i i
4 = f = (p x q y r+ +        (5)

 

where w i  is the output of layer 3 and [pi, qi, and 
ri] is the parameter set. 

The single node in the last layer labeled Σ 
computes the overall output by using the weight-
ed average defuzzification method:
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3.2 Introduction to the tGF-nn Model

The previously developed TGF-NN model by Chang 
and Lin (2006) has achieved good performance in predict-
ing tides at a station of interest using its data, and the data 
from other tide gauge sites close to this station. The key 
input variables are investigated through the tide-generating 
forces, which are D, t , and θ between the sun and the earth 
and between the moon and the earth at any time. The JPL So-
lar System Ephemeris (DE200 series, which is in the J2000 
system) (Standish 1982, 1990) are applied to calculate the 
parameters of the tide-generating forces as the inputs of the 
TGF-NN model. The angle {  between two vectors from 
the center of the earth to the center of the sun or moon de-
termines the relative positions of the sun, the moon and the 
earth. The cos{  can be adopted to identify the spring-neap 
tidal cycle. The seven crucial parameters, / ( )R D tm , / ( )R D ts
, / ( )R tmt , / ( )R tst , [ / ( )] ( )cosR D t tm m

2 i , [ / ( )] ( )cosR D t ts s
2 i

, and ( )cos t{ , form an input vector and are related to the 
output (observed tides at Hua-Lien) in TGF-NN to establish 
the valid weight and bias matrices. The proposed TGF-NN 
model that is established by back-propagation, NN, has one 
hidden layer with five neurons. Five neurons were deter-
mined by examining several cases of different numbers of 
neurons in the hidden layer, and 2-hour lead time inputs were 
examined to have the smallest target error. The maximum 
iteration was set to 1500 in the sub-optimal procedure.

3.3 the tGFt-Fn Model

A histogram fits for the sea level data at Hua-Lien sta-
tion for year 2001, and can be represented by the normalized 
Gaussian function, as illustrated in Fig. 6. Accordingly the 

Gaussian membership function is chosen in the ANFIS. The 
720-hourly averaged sea surface temperature is applied to 
train the ANFIS for suitably fitting the parameters of the 
membership functions to tide data. The hourly averaged 
sea surface temperature and tide are the input and output 
respectively. Two Gaussian membership functions are cho-
sen in this study indicating that the combine of fuzzy rules 
and fuzzy membership functions (MFs) are extracted in the 
present model, as observed from the training and testing 
processes. The premise and consequent parameters should 
be properly obtained such that the pattern can be recog-
nized. A least square method is employed to optimize the 
consequent parameters with the premise parameters fixed 
and the premise parameters can be adapted by a gradient 
descent method. Thus, the output functions which are linear 
functions of the input variable and the output functions with 
respect to membership functions and rules can be written as 
follows:

 
1. IF input is high THEN ouput = -10.37 × input + 237.48
2. IF input is low THEN output = -3.89 × input + 129.34

The changes of the shape of the initial and the final mem-
bership functions of hourly averaged SST are illustrated in 
Fig. 7. As stated above, the trained model, establishing the 
ANFIS output in matching the tide data, is applied to predict 
the hourly averaged tides, as indicated in this study.

The TGFT-FN model combines the TGF-NN, as pro-
posed by Chang and Lin (2006), and ANFIS associated with 
tide generating forces and mean sea surface temperature in 
light of predicting ocean tides. The training data of TGF-
NN and ANFIS are equilibrium and mean tides, as demon-

Fig. 6. Histogram of tides at Hua-Lien for the year 2001 and fitting of a normal 
distribution (solid line).
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strated in this paper. Subtracting the 
mean tide from the tide gauge data 
allows for the equilibrium tide to be 
identified. The predicted ocean tide 
is observed from equilibrium and 
mean tide as a result of training both 
models. The construction chart of 
TGFT-FN is depicted in Fig. 8.

4. rESuLtS And dIScuSSIon
4.1 Model Validity

The tide generating forces and 
720-hourly averaged sea surface 
temperature at Hua-Lien for year 
2001 are utilized to establish the 
TGFT-FN model. Observed mean 
tides and predicted mean sea level 
by the TGFT-FN model trained 
at Hua-Lien are related to the four 
nearby stations. The correlation co-
efficients of averaged tides observed 
at Hua-Lien and the four other stations are shown in the 
second row of Table 1. The last row of Table 1 indicates the 
correlation coefficients of averaged tides simulated at Hua-
Lien and averaged tides observed at one of four stations. For 
the observed data at Hua-Lien, the correlation coefficients 
vary within a range of 0.55 - 0.73 shown in the second row 
of Table 1. For the simulated data at Hua-Lien the correla-
tion coefficients in the last row of Table 1 range between 
0.72 - 0.91, higher than the former ones. 

Commonly the simulation performance of predictors 
by a method or a model is evaluated by the root mean square 
(RMS) or the square of correlation coefficient (R2). The RMS 
and R2 are defined as: 
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where η0 (ti) and ηp (ti) are the observed and simulated sea 
levels, respectively, at time ti ; N is the total number of data; 
ph  is the mean of all predictors.

The sea level data (includes tides) at Hua-Lien for the 

year 2001 are used to train both the original TGF-NN model  
and the TGFT-FN model and the results are shown in  
Table 2. The simulated data by the TGF-NN model corre-
sponding to the observed data have RMS of 6.37 cm and 
R2 of 0.977. The simulated data by the TGFT-FN model 
for 2001 have a higher RMS of 7.32 cm and lower R2 of 
0.963 than those of the TGF-NN model. Both well devel-
oped models are examined to directly calculate the tides at 
Hua-Lien for the year 2002 after input parameters are avail-

Fig. 7. The initial and final membership functions of 720-hourly averaged SST.

Fig. 8. The construction chart of the proposed TGFT-FN model. 

Table 1. Correlation coefficient of observed or simulated averaged sea 
level by the TGFT-FN model at Hua-Lien to those observed at the 
other four tide gauge sites. 

tide station
Sea level tc SA cG Ly

0h 0.71 0.73 0.55 0.60

ph 0.91 0.91 0.86 0.72
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able. The RMS and R2 of computed tides corresponding to 
the observed ones by both models are 10.57 cm, 0.935 and  
8.73 cm, 0.951, respectively. The results indicate that the 
proposed TGFT-FN model improves the capacity of simu-
lating the tides under consideration of long-term variation 
of tides as a response to sea surface temperature. The scat-
ter plot of simulated tides by the TGFT-FN model against 
the observed data for years 2001 and 2002 are depicted in  
Figs. 9 and 10, respectively. Both figures show that the plot-
ted data with a narrow-banded distribution are located along 
the line of best fit with a liner function. High correlation 
coefficients R2 = 0.963 and R2 = 0.951 in Figs. 9 and 10 
indicate that the proposed model TGFT-FN model is well 
trained for testing the ocean tides in year 2001 and is practi-
cal for accurately predicting the tides in the next year.

4.2 Extended Application of the tGFt-Fn Model to 
different Stations

The developed TGFT-FN model is applied to direct-
ly calculate the sea level (includes tides) at four sites near 
Hua-Lien, using astronomical input parameters and sea sur-
face temperature. The results of RMS and R2 are listed in  
Table 2. The four values of RMS obtained by the TGFT-FN 
model for the year 2001 range between 7.70 - 15.03 cm. 
These values are smaller than those computed by the TGF-
NN model with a range of 13.47 - 18.57 cm. For 2002, the 
TGFT-FN model also has better simulation of tides than the 
TGF-NN model by a difference of 2.75 - 4.87 cm. 

A relative error is defined as the ratio of root mean 
square to the mean tidal range (MTR) for representing an 
alternative criterion of simulation capacity considering the 

variation of mean tidal range at different points:
 

(%) 100Err MRT
RMS

#=         (9)
 

Tides at a point can be predominantly semidiurnal, pre-
dominantly diurnal, or mixed. Their nature is determined 
by the ratio ( ) ( )F K O M S1 1 2 2= + +  where K1, O1, M2, and 
S2 are the amplitudes of four main constituents at a station 
in general. If F < 0.25, the tides are predominantly semidi-
urnal and if F > 3.0, the tides are predominantly diurnal. If  
0.25 < F < 1.5, the tides are mixed, but mainly semidiurnal, 
and if 1.5 < F < 3.0, the tides are mixed, but mainly diur-
nal. The four points from north to south are examined to 
have F = 0.71, 0.64, 0.49, and 0.42, respectively. F = 0.48 
is estimated for Hua-Lien. All values of F at chosen points 
indicate mixed tides, but mainly semidiurnal. The MTRs at 
chosen points vary within a range of 65 - 109 cm.

The computed Err(%) at five stations for years 2001 
and 2002 are list in Table 3. Err(%) obtained by the TGF-
NN model for years 2001 and 2002 varies within a range of 
6.64 - 28.57% and 10.76 - 27.09%, respectively. However, 
Err(%) obtained by the TGFT-FN model for years 2001 and 
2002 ranges within 7.06 - 23.12% and 7.79 - 22.86%, re-
spectively. Err(%) obtained by the TGFT-FN model is gen-
erally smaller than that obtained by the TGF-NN model. Ad-
ditionally, Err(%) obtained at a station far from Hua-Lien is 
larger than that at a station near Hua-Lien. As expected, this 
results from the tidal type of the station being gradually dif-
ferent from that of Hua-lien’s as the distance between that 
site and Hua-Lien increases. 

Table 2. Simulation capacity of the TGF-NN or TGFT-FN models examined at five sites for years 2001 and 2002.

year Index Method
Location

tc SA HL cG Ly

2001

RMS (cm)
TGF-NN 18.57 14.37 6.37 13.47 15.71

TGFT-FN 15.03 10.28 7.32 7.70 11.94

R2
TGF-NN 0.845 0.878 0.977 0.950 0.860

TGFT-FN 0.902 0.936 0.963 0.966 0.916

2002

RMS (cm)
TGF-NN 17.61 14.19 10.57 11.73 16.79

TGFT-FN 14.86 10.82 8.73 8.49 11.92

R2
TGF-NN 0.856 0.861 0.935 0.923 0.836

TGFT-FN 0.898 0.932 0.951 0.948 0.913
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5. concLuSIon

The predominate sea level signal is the seasonal varia-
tion caused by the seasonal heating of the ocean by the sun. 
The observed annual amplitude in sea level due to varying 
temperature can reach about 15 cm and become important 
when this signal is considered to improve prediction of sea 
level (including tides). Applying a 720-hour moving aver-
age to the hourly data of tides and sea surface temperature, 
the mean tides and sea surface temperature are shown to 
be highly correlated as indicated by high correlation coef-
ficients and there is an implied quasi-period of about one-
year. Thus, that is similar to the Sa component of tides in 
harmonic analysis, which is inseparable from the annual 
signal. The mean sea surface temperature is applied to the 
trained ANFIS to predict hourly averaged sea level data. The 

proposed TGFT-FN model combines the ANFIS, which is 
used to simulate the mean tides, and the original TGF-NN 
model, that considers the tide-generating forces as input pa-
rameters in the neural network.

The sea level data and sea surface temperature at Hua-
Lien for the year 2001 are applied to establish the TGFT-FN 
model. The simulation capacity of the TGFT-FN model is 
found to be better than that of the original TGF-NN model 
by comparing the RMS and R2 of calculated tides for the 
year 2002. The proposed TGFT-FN model can be applica-
ble to directly calculate the sea level (includes tides) at four 
stations next to Hua-Lien. The TGFT-FN model has better 
predictive capability of tides at five stations of interest than 
the original TGF-NN model by having less RMS of about 

Fig. 9. Scatter plot of simulated sea level/tides by the TGFT-FN model 
against the observed sea level/tides at Hua-Lien station for the year 
2001.

Fig. 10. Scatter plot of computed sea level (includes tides) by the 
TGFT-FN model against observed sea level at Hua-Lien for the year 
2002.

Table 3. Err(%) computed by the TGF-NN or TGFT-FN models at five sites for years 2001 and 2002.

year Method
Location

 tc  SA  HL  cG  Ly

 2001
TGF-NN 28.57 14.81 6.64 12.36 16.03

TGFT-FN 23.12 10.60 7.63 7.06 12.18

2002
TGF-NN 27.09 14.63 11.01 10.76 17.13

TGFT-FN 22.86 11.15 9.09 7.79 12.16
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2 - 5 cm and by less relative error of 5%. The proposed 
TGFT-FN model would be applicable to tidal and sea level 
simulation in the case where tides at a point are not available 
so that harmonic analysis cannot be applied. 
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