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ABSTRACT

The parameters in numerical wave models need to be calibrated before a model can be applied to a specific region. In this
study, we selected the 8 most important parameters from the source term of the WAVEWATCH I1I model and subjected them to
sensitivity analysis to evaluate the sensitivity of the WAVEWATCH III model to the selected parameters to determine how
many of these parameters should be considered for further discussion, and to justify the significance priority of each parameter.
After ranking each parameter by sensitivity and assessing their cumulative impact, we adopted the ARS method to search for
the optimal values of those parameters to which the WAVEWATCH III model is most sensitive by comparing modeling results
with observed data at two data buoys off the coast of northeastern Taiwan; the goal being to find optimal parameter values for
improved modeling of wave development. The procedure adopting optimal parameters in wave simulations did improve the

accuracy of the WAVEWATCH III model in comparison to default runs based on field observations at two buoys.
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1. INTRODUCTION

For several decades, numerical wave models have been
an integral part of weather prediction at weather forecast
centers around the world. Major meteorological agencies
now rely on so-called third-generation wave models such as
WAM or WAVEWATCH III (WW3). In these models, all
physical processes describing wave growth and decay are
parameterized explicitly. Therefore, there are many empiri-
cal or tuning parameters in the formulas of models, and the
setting of these parameters greatly influences the results of
model simulation. Consequently, it is important to first de-
termine the most influential parameters and then find their
optimal values so as to improve model outcomes.

Sensitivity analysis (SA) (Saltelli et al. 2000) was cre-
ated to deal simply with uncertainties in model parameters.
Since its development, SA has been used widely in many
fields. Gu and Li (2002) adopted SA to evaluate river tem-
perature variations in response to changes in hydraulic and
meteorological conditions. Vachaud and Chen (2002) an-
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alyzed a large-scale hydrologic modeling problem using
sensitivity theory. Nagai (2002) performed SA of a new at-
mosphere-soil-vegetation model setting on surface fluxes.
Lamoureux et al. (2006) used SA to identify which factors
had a greater effect on pond temperature. These effective
applications of SA sparked our interest in adopting the SA
method for our wave model parametric test in order to in-
crease the accuracy of our model.

In this paper, we first analyze the WW3 to determine
which of the model’s many parameters most influence the
model. We then conduct sensitivity analysis on these para-
meters to rank them by sensitivity; i.e., to which of the
selected parameters is the model most sensitive. We then ap-
ply the adaptive random search (ARS) method (T6rn and
Zilinskas 1989) to determine the optimal values of the most
important parameters. Finally, the results of our analysis are
used to run the WW3; and a three-way comparison is made
between actual buoy observations, our model, and a default
run of WW3 (using default parameter settings) for coastal
waters off northeastern Taiwan.
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2. PARAMETERS SELECTED FROM THE WAVE
MODEL

2.1 The WW3 Model

WW3 (Tolman 2002) predicts the evolution in the two-
dimensional physical space x and time ¢ of the wave action
density spectrum F' of the wavenumber k and direction 6 as
F(k, ). This model was selected for our study because of its
invariant characteristics with respect to the physics of wave
growth and decay for variable water depths. The net source
term S consists of four parts: (1) a wind-wave interaction
term, S;,; (2) a nonlinear wave-wave interaction term, S,; (3)
a dissipation (white cap) term, S,;; and (4) a wave-bottom in-
teraction term, Sy, (€.g., Shemdin et al. 1978):

S = Sin + Snl + Sds + Sbot (1)

However, WW3 incorporates many empirical and tun-
ing parameters that may or may not have importance from
the standpoint of the physical processes that this model is
meant to describe. As a result, to improve upon default runs
of the model, it is important to select those parameters that
are most influential over the model and then test the sen-
sitivity of the model to these selected parameters. The para-
meters to be selected are defined in the formula of the
source term.

2.2 Description and Selection of Parameters

2.2.1 Nonlinear Wave-Wave Interactions Term

Nonlinear wave-wave interactions can be modeled us-
ing discrete interaction approximation (DIA, Hasselmann et
al. 1985). Nonlinear interactions occur between four wave
components (quadruplets) with wavenumber vectors k; th-
rough k4. For these quadruplets, the contribution, 45, to the
interaction for each discrete (f;, 6) combination of the spec-
trum corresponding to K, is calculated as:

5Sn[ 1 -2 £
08,3 | = D| 1 Cg™ rl,ll x 4R’ {—34
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F, 2K KF,
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where F = F(f,. 1, 0)), etc., S, 1 =0Su(f,.1,0), etc., g is the
acceleration of gravity, and C is a proportionality constant.
Nonlinear interactions are calculated by considering a li-
mited number of combinations (4,;, C). Default values in
DIA for different input dissipation are quite different.
Therefore, C was one of the selected parameters here.
Formula (2) is developed for deep water, using the ap-

propriate dispersion relation in resonance conditions. For
shallow water, the wave expression is scaled by the factor D:

¢ 7 —cy kd
D=1+ =(1-c¢kd)e® 3
(1 - k) (3)
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where kd = 075kd, k = [1 /\/%) , k is the wavenumber,

d is the mean water depth, and ¢, ¢,, ¢; are default values
for the constants (Hasselmann and Hasselmann 1985).
The shallow water wave correction of Eq. (3) is valid for
intermediate depths only. For this reason, the mean relative
depth kd is not allowed to become less than 0.5 and it can
be reset by the user in the input files of the model.

2.2.2 Wind-Wave Interaction Term and Dissipation
Term

In this study, the input source term is adopted from
Chalikov and Belevich (1993) and Chalikov (1995). How-
ever, during testing of a global implementation of WW3
including this source term (Tolman 2002), it was found that
its swell dissipation due to opposing or weak winds was
severely overestimated. To correct this deficiency, a fil-
tered input source term is used. It is defined as:

S, Jor p =20 or f>08f,
Sim = XS, for B <0 and f<06f, (4)
XS for B <0 and 06f,<f<08f,

where f is a nondimensional wind-wave interaction para-
meter, f'is the frequency, f, is the peak frequency of the
wind sea computed from the input source term, S; is the in-
put source term, and X; (0 <X < 1) is a reduction factor for
S;, which is applied to swell with negative § only (defined
by the user). ys represents a linear reduction of X, with f,
providing a smooth transition between the original and the
reduced input. Therefore, X; is one of the selected para-
meters here.

Test results of these source terms in a global model im-
plementation (Tolman 2002) suggested that the wind speed u
can be replaced by an effective wind speed u,.. In Tolman
(2002), the following effective wind speed is used:

-1/2
B _ S (%
u 1+ C + G
C, = ¢ tanh{max[0, £ (ST - 5T;)7} (6)
C, = ¢ tanh {max[ 0./, (ST - S7;)]} )
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where ST is a bulk stability parameter, 7,, T;, and T are the
air, sea, and reference temperature, respectively, and uy, is the
wind speed at 2 m height. Furthermore, f; <0, ¢; and ¢, have
opposite signs and f>=fjc; / ¢,. The default parameter ¢, set-
ting can be redefined by the user in the program input files.

2.2.3 Wave-Bottom Interaction Term

Wave-bottom interaction has to be considered in a shal-
low water environment. Here, using the notation of Tolman
(1991), it can be written as:

n-0

Spalk, 0) = 20— > N(k, ) ©)

where I' is an empirical constant, which can be redefined
by the model input files, and # is the ratio of phase velocity
to group velocity.

2.2.4 The Spectral Shape of the Source Term

Due to the maximum change in action density, AN,, is
determined from a parametric change of action density AN,
and a filtered relative change AN,.

AN, (k, 6)=min [AN,,(k, 0), AN,.(k, 9)] (10)
a )t 1

AN, (k. 0) = X, ; - (11)

AN, (k, 0) = X, max| N(k, 0), N, | (12)

Ny = max{ANP(kmax, 0), X, rvrll(e’vé[N(k, 9)]} (13)

where X, X,, and X; are user-defined parameters in the
source term integration scheme, a is a PM (Pierson-
Moskowitz) energy level, and &, is the maximum discrete
wavenumber.

Summarizing the above analysis of the source term, the
following parameters were selected to conduct sensitivity
analyses and seek optimal initial values for the model: ¢, in
Si, representing a direct wind correction; C in S,;, being a
proportionality constant; kd in S,;, being the mean relative
depth; X; in S;,, being a reduction factor during opposing or
weak winds; I" in S, being an empirical constant; X, X,
and X, being the user-defined constants during simulated
action density.

3. SENSITIVITY ANALYSIS FOR THE
PARAMETERS

3.1 Sensitivity Analysis and the Objective Function
Evaluation Index

Generally, SA is used to offer information on the accu-
racy of or errors in model results. It shows how model re-
sponse results in slight changes to parameter values during
simulation. Here, we propose a method by which SA can be
used to analyze the sensitivity of the model to the selected
parameters. These sensitivities are then used to rank the se-
lected parameters.

To analyze the sensitivity or error of a time series from
the results of the default run and the simulation run for
model performance, this study adopts objective function
(OBJ) as an evaluation index to determine the sensitivity of
the parameters. In this section, the simulation run is defined
as each parameter increases at a fixed ratio, for example,
+10%, £20%, and £50%, to the default value as an input in
the model. Hence, there are six simulation runs for each
parameter. The grid point of the model output is close to the
buoy station used to gather actual observations. The final
OBJ of each parameter is calculated using the averaged
value of the difference in the model results between the de-
fault run and the simulation run after running the six si-
mulations. The OBJ is defined as:

N

OBJ = [0, - MY x WL,] [N (14)
i=1

WI, = (O, + 0)/ (2 x 0) (15)

where O; is the time series of the output of the default run,
M, is the time series of the result of the simulation run, N is
the number of the time series, WT; is the weighting coeffi-
cient, and O is the average of the time series of the default
run. The smaller the value of OBJ is, the lesser the error be-
tween the default run and the simulation run will be. In this
paper, we use OBJ analysis to determine the sensitivity of
each selected parameter. We also use the results of OBJ
analysis in a latter section to discuss errors in significant
wave height and mean wave period for both the winter
monsoon and Typhoon Dujuan.

3.2 Objective Function Analysis Using the Data of
Taiwanese Waters

In order to calculate sensitivity in the model, basic data
for the period 1 November to 15 December 2003 (winter
monsoon) was used to drive the model. In this case, the do-
main of the model covers longitude 100 to 145°E and lati-
tude 0 to 45°N, with a 0.5° grid resolution in longitude and
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latitude (Fig. 1, inset map). The domain of the wind field
data also covers the same region with a 0.5° grid resolution
at 1-h resolution. Two corresponding buoy stations (Long-
dong and Hualien) are also shown in Fig. 1.

The sensitivities of the eight parameters (c,, X,, C, X;, I,
kd, X}, and X,) selected for this study by OBJ for the two ded-
icated buoy stations are shown in Table 1. The normalized
OBJ of each parameter is shown in Fig. 2. The results reveal

Latitude

A 4 & 8 4 4 4 &

g

Longitude

Fig. 1. Domain of model and buoy stations: 1, Hualien; 2, Longdong.

T - A
Cec, I KX X, X, X,

Parameter

Normalized error percenyage (%)
A\

Fig. 2. Normalized OBJ of each parameter.

that the most sensitive parameter is c,, which represents a di-
rect wind correction. The results also indicate that the sensi-
tivity discrepancy for each parameter is large.

Using the sensitivities of the eight parameters shown in
Table 1, we now determine the cumulative errors that occur
in the model as a result of changing the selected parameters.
We start by using the parameter to which the model is most
sensitive, a direct wind speed correction (c,). In this analy-
sis, ¢, changes, first, from the default value by a fixed ratio of
+10%, +20%, and +50% for each model simulation. The
other seven parameters are kept at their initial default values.
We then sum the difference between the default run and the
model outcome for each run containing a new value for c,.
The cumulative error for the six runs is 1.949, which repre-
sents the sensitivity index in the model for the parameter c,,.
Next, we perform the same analysis using the first two
ranked parameters from Table 1; i.e., ¢, and X},, which gave a
cumulative error of 2.012. The final results of all selected
parameters for the buoy stations at Longdong and Hualien
are shown in Table 2.

The normalized cumulative averaged error is shown in
Fig. 3. It is up to 99% for the four parameters c,, X,, C, and
X;. This means that model response is very sensitive to these
four major parameters.

Table 1. OBJ and sensitivities of each parameter.

Parameters OBJ Sensitivities
C 0.686 3
Co 4.680 1
r 0.036 5
kd 0.016 6
Xy 0.000 7
Xy 0.879 2
X, 0.000 7
X 0.160 4

Table 2. Cumulative error due to number of parameters.

Number of parameters Cumulative error

1 1.949
2 2.012
3 2.041
4 2.051
5 2.054
6 2.054
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Fig. 3. Normalized cumulative errors of the parameters.

4. SEARCHING FOR THE OPTIMAL VALUES OF
SELECTED PARAMETERS

4.1 Adaptive Random Search

Adaptive Random Search (ARS) is a tool (Torn and
Zilinskas 1989) that can be used for obtaining regional opti-
mal values using the macrocosm search method.

The object of the ARS is to find the optimal value of a
model parameter; i.e., a parameter value that exhibits the least
error between the simulation run and the default run. First, it is
assumed that any default parameter is a center point along a
linear axis with specific positive and negative units as the up-
per and lower boundaries (Fig. 4). The initial value of the
model parameter is taken as one-tenth of the value between
the lower boundary and the upper boundary; for example:

initial value = (upper bour_ldary — lower boundary) x
[1+(10%)],i=1,2,...9 (16)

The minimum error can be found between the simula-
tion run and observation. At this point, the original default

lower default upper
boundary parameter boundary
' ° ° ° ° ,.' o ° ° ° '
C A B

Fig. 4. Diagram of the searching range of the ARS method.

value is replaced by this new value, which corresponds with
the minimum error as the center point. Next, the same proce-
dure again finds the optimal value, thus locating the second
digital value of this new default value. Finally, by repeating
this procedure several times, we can find the final, optimal
value for this model parameter.

4.2 Determining the Optimal Values of the Most
Important Parameters

In the case of Taiwanese waters, Taiwan’s subtropical
location in the western Pacific means that the northeast
monsoon brings high or even huge waves to the northeast-
ern coastal waters of Taiwan. By applying the ARS met-
hod, we hope to find the optimal values of the model pa-
rameters that best describe wave behavior during the win-
ter monsoon. The final results of the optimal values for ¢,,
Xy, C, and X; (i.e., those parameters to which the model is
most sensitive) in northeastern Taiwanese waters are listed
in Table 3.

5. VERIFICATION OF THE MODEL SIMULATION

To verify the acquired optimal values of the model pa-
rameters (Table 3) we need to test the model in Taiwanese
waters. This study adopts the winter monsoon and typhoon
Dujuan for the model simulations. The experimental periods
are from 20 to 29 February 2004 and from 30 August to 3
September 2003 for the winter monsoon and typhoon Du-
juan, respectively, using wind-field data at 1-h resolution
(Central Weather Bureau of Taiwan).

Figures 5 and 6 show the results of the time series of
the model simulation for the Longdong buoy station in the
winter monsoon. Figures 7 and 8 show the results for the
Hualien buoy station in the winter monsoon. In the dia-
grams, the dots, solid line, and dashed line represent buoy
observations, default simulation, and experimental simula-
tion, respectively. The results from Figs. 5 and 7 reveal that
wave height from the experimental simulation is more ac-
curate than that of the default simulation. Whilst, the re-
sults from Figs. 6 and 8 indicate that the mean wave period
from the experimental simulation is slightly better under
the default simulation.

Table 3. Optimal parametric values for Taiwanese waters.

Parameter Default values Tuned values
Co 1.4 1.25
c 1.0 x 10 1.20 x 10’
X, 0.15 0.25
X 0.125 0.112
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Figures 9 and 10 show the results of the time series of
the model simulation for the Longdong buoy station during
typhoon Dujuan. Figures 11 and 12 show the results for the
Hualien buoy station during typhoon Dujuan. In the dia-
grams, the dots, solid line, and dashed line represent buoy

E

£S5

)

‘s 4

=

g 3

)

k=

S 1 *:

h=

En 0 1 1 1 1 1 n

‘% 20-Feb 22-Feb 24-Feb 26-Feb 28-Feb 1-Mar
Date (2004)
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Fig. 8. T, time series at the Hualien data buoy in the winter monsoon.

observations, default simulation, and experimental simula-
tion, respectively. The results from Figs. 9 and 11 reveal
wave height from the experimental simulation is more accu-
rate than that of the default simulation. Similarly, the results
from Figs. 10 and 12 indicate the mean wave period from the
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Fig. 9. H, time series at the Longdong data buoy in typhoon Dujuan.
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Fig. 10. T,, time series at the Longdong data buoy in typhoon Dujuan.
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Fig. 12. T, time series at the Hualien data buoy in typhoon Dujuan.
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experimental simulation is more accurate than that of the de-
fault simulation.

The OBJ errors from the experimental and default simu-
lations are listed in Tables 4 and 5. The error information and
the model simulations indicate that the model is much im-
proved for the experimental simulation of Hy, which adopted
the optimal values of the parameter. In other words, this
study improved accuracy in modeled wave height, but did
not improve accuracy equally as well for the wave period.
One reason for this might be that the wave spectrum overes-
timated the high frequency and underestimated low frequ-
ency during wave-growth calculations (Lee et al. 2006).

6. CONCLUSIONS

This paper provides a systemic way to search for opti-
mal parameter values for improved modeling of wave deve-
lopment. The most influential parameters were selected
from the source term of the WW3 and subject to sensitivity
analysis and optimal value identification in order to improve
the accuracy of the model over default runs (i.e., model runs
using default parameter settings) for coastal waters off of
northeastern Taiwan. Four parameters, the cumulative in-
fluence of which was given at 99% of errors, were found to
be the most important factors in tuning the WW3. These four

Table 4. OBJ error of Hg model simulations vs. specific buoy wave observation.

Parameter setting

Default simulation

Experimental simulation

Station
Longdong data buoy 0.30 0.11
Hualien data buoy 0.37 0.06

Table 5. OBIJ error of Ty, model simulations vs. specific buoy wave observation.

Parameter setting

Default simulation

Experimental simulation

Station
Longdong data buoy 0.91 0.61
Hualien data buoy 2.01 1.34

parameters revealed by sensitivity analysis are: ¢, (a direct
wind correction), X, (a constant of the PM wave spectrum),
C (a proportionality constant), and X (a reduction factor
during opposing or weak winds).

After ranking each parameter by model sensitivity, we
adopted the ARS method to search for the optimal values of
those four parameters to which the model is most sensitive.
This was achieved by comparing modeling results with ob-
served data at two buoys deployed at Longdong and Hualien
off northeastern Taiwan.

The accuracy of wave simulations using optimal values
for the selected parameters derived in this study was greatly
improved over the default runs at the two data buoys. How-
ever, the same cannot be said for improved accuracy in wave
period modeling. Here, slight improvement was observed
for the simulation of Typhoon Dujuan but the winter mon-
soon result was less conclusive.
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