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AbStrAct

The non-thermal high-energy electron effects on Langmuir wave-particle interaction are investigated using an initial 
value approach. A Vlasov-Poisson simulation is employed based on the splitting scheme by Cheng and Knorr (1976). The 
kappa distribution function is taken as an example of non-thermal electrons. The modification is manifested as an increase 
in the Landau damping rate and a decrease in the real frequency for a long wavelength limit. A part of the analyses using the 
modified plasma dispersion function (Summers and Thorne 1991) is reproduced for l  = 2, 3 and 6. The dispersion relation 
from the initial value simulation and the plasma dispersion function compare favorably. 
(PACS numbers: 52.35.Fp, 52.35.Sb, 52.65.Ff).
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1. INtrODUctION

Space plasma is far from being in a thermal equilib-
rium. Suprathermal electrons are often observed in space 
plasmas (Vasyliun 1968). The kappa distribution function 
(Leubner 2004) is one of the good examples of non-Max-
wellian distribution functions. In one limit (Tsallis 1988) the 
kappa distribution function evolves toward Maxwellian. 

To investigate wave-particle interaction, or Landau 
damping (Landau 1946; Jackson 1960) one needs to incor-
porate the velocity space dynamics using the Vlasov equa-
tion. One of the first pieces of work that made Vlasov equa-
tion numerical simulation available is the splitting scheme 
by Cheng and Knorr (1976) based on the method of charac-
teristics. This method has become a standard method for the 
Vlasov type simulation. The method applies as long as the 
system is dissipation-less, in other words, if the phase vol-
ume of the system conserves. The Vlasov-type simulation 
in lower dimensional cases has advantages over Particle-in-
Cell (PIC) simulation because the Vlasov simulation does 
not accompany statistical errors. The Vlasov simulation in 

lower dimension is suitable for investigating subtle effects 
such as a slight deviation in the equilibrium distribution 
function from Maxwellian.

One of our long term goals is to investigate the dynam-
ics of Langmuir solitons (Zakharov 1972) which can then 
evolve into Langmuir turbulence (Wang et al. 1994, 1995, 
and 1996). Using the splitting scheme (Cheng and Knorr 
1976), the electrostatic Vlasov simulation has revealed plas-
ma heating by Langmuir solitons (Lin et al. 1995).

The purpose of this paper is two-fold. The first purpose 
is to recapitulate the Cheng and Knorr (1976)’s method ac-
curately for further advanced study of Langmuir solitons. In 
this work, the splitting scheme is revisited and the Cheng 
and Knorr (1976)’s results are reproduced. The second pur-
pose is, as an initial exercise, to capture the non-Maxwellian 
distribution function effect on Landau damping.

This paper is organized as follows. Section 2 describes 
the basic computation model. Section 3, we start from ver-
ifying the simulation results with the free streaming case 
whose analytical solutions are known. The benchmark lin-
ear and nonlinear numerical simulation results are discussed 
in section 4. The non-Maxwellian kappa distribution func-
tion effects are discussed in section 5. Direct comparison 
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of the simulation results with modified plasma dispersion 
function is discussed in section 6. We summarize this work 
in section 7.

2. MODEL EQUAtIONS AND NUMErIcAL MEtH-
ODS

In this section, the model equation of the Vlasov-Pois-
son simulation is described. For the work transparency, we 
recapitulate Cheng and Knorr (1976) as precise as possible 
including the notations. A one-dimensional Vlasov-Poisson 
system in the MKS unit is given by
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where the densities nj = nj(x, t) of each species (subscripts  
j = i for the ions and j = e for the electrons) are given by the 
distribution functions fj = fj (x, υ, t) 
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Here mj and qj are the mass and the charge of the species. 
The electric field is given by E and the vacuum permit-
tivity is given by ε0. The coordinates in configuration and 
velocity spaces are given by x and υ, respectively. The 
equations are further normalized by the Debye length λe =  
(ε0 Te /n0 me)1/2, the plasma frequency ωe = (n0 e2/ε0 me)1/2, and 
the electrostatic field is normalized by E  = (eλe E/Te) which is  
equivalent to having the electrostatic energy being com-
parable to the electron thermal energy. Here, e is the unit 
charge and the electron temperature is given by Te. By em-
ploying the bars denoting the normalized values, we have  
x  = x/λe, t  = ωet, v  = v/λeωe, and f  = (λeωe/n0) f, where n0 
is the equilibrium electron and ion densities. Note that the 
thermal velocity of the electrons is given by υe = (Te/me)1/2 =  
λeωe.

After the normalization, we obtain a Vlasov-Poisson 
system in the λe (space) and ωe (time) scales,
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where the ion density is taken to be uniform [signified by 
unity in Eq. (5)] and the distribution function f  is for the 
electrons. Equations (4) and (5) correspond to Eqs. (1a) 
and (1b) of Cheng and Knorr (1976). Hereafter we drop the 
bars.

The splitting scheme (Cheng and Knorr 1976) is based 
on the method of characteristics which is equivalent to the 
lowest order symplectic integrator (Ruth 1983). We evolve 
the distribution function by tracing the characteristic curves 
in the phase space. The method takes three steps which is 
given by

, ,f x tf x 2* ny y yD= -^ ^h h        (6)

, ,f x f x E x t** *y y D= +^ ^h h6 @       (7)

and finally,

, ,f x f x t 2**n 1 y y yD= -+ ^ ^h h       (8)

whose kinetic energy part and the potential energy part are 
time advanced alternatively (the lowest order method cor-
responds to the well-known leap frog method employed fre-
quently in PIC simulation). The superscript n stands for the 
time step. 

Note that the splitting scheme is not a finite differ-
ence scheme. In the splitting scheme, if the reference points 
along the characteristic curves “x - υΔt/2” or “υ + E(x)Δt” 
are exactly on the mesh points, the method is quite trivial. 
However, in general, the points of references are located in 
between mesh points of the x and v space. We thus need an 
interpolation technique to realize Eqs. (6), (7), and (8). As in 
Cheng and Knorr (1976), we use Fourier interpolation in the 
configuration space and linear interpolation in the velocity 
space (Watanabe 2005). The computational mesh we em-
ployed is exactly that of Fig. 1 in Cheng and Knorr (1976). 
Note that we do not have mesh points on the υ = 0 axis.

We need to solve the Poisson equation, Eq. (5) to 
make the simulation self-consistent. The Poisson equation 
is solved using the Fourier transform because we adopt a 
periodic configuration in x in this paper. All of the calcu-
lations in this paper employ periodic boundary conditions. 
The electric field is solved directly as in Eq. (5) without 
calculating the electrostatic potential.

3. FrEE StrEAMING cASE WItH E = 0

To begin with the numerical simulation, we start by  
verifying the solution of free streaming case [the Van 
Kampen mode, (Van Kampen 1955)] whose analytical so-
lutions are known. Setting E = 0 in Eq. (4), we obtain
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Following Nicholson (1992), for example, the analytical so-
lution can be given by setting

, , ~ expf x t ik ty y-^ ^h h      (10)

For example, if we take an initial condition

, , cosf x A kx e0 22y = y-^ ^h h      (11)

we obtain the analytical solution

, , cos cosf x t A kx e k t22y y= y-^ ^ ^h h h   (12)

Shown in Fig. 1a is the solution of Vlasov equation in 
a free-streaming case. No force is acting on the electrons. 
The thick solid line is the initial condition of the distribution 
function at a fixed point x = 0. The time advanced distribu-
tion function by the numerical simulation is given by the 
black dots at t = 12.5 (time is normalized by the inverse of 
plasma frequency, ωe

-1), which matches with the analytical 
solution given by the dash-dotted curves. Parameters em-
ployed in the simulation are the maximum cut-off velocity 
υmax = 10 υe, and 0 ≤ x ≤ 4π. For the mesh points, 32 and 
256 are taken in the x and v direction, respectively (although 
we did calculate, the regions y  > 5.0 are not shown in the 

figure). Shown in Fig. 1b is the solution of Vlasov equation 
in the free-streaming case but with an initial condition given 
by

, , 1 cosf x A kx e0 22y = + y-^ ^h h6 @      (13)
 

The time advanced distribution function at t = 6.25 is given 
by the solid curve at x = π and by the dash-dotted curve 
at x = 3π. Note that, as demonstrated by the two solutions 
at x = π and x = 3π, the evolution of the distribution func-
tion exhibits point reflection across x = 2π. The distribution 
function streams in positive direction in υ > 0 while streams 
in negative direction in υ < 0, as a reminder. In both Figs. 1a  
and b, A = 0.5 and k = 0.5 are taken. The calculation dis-
cussed in this section validates the interpolation scheme em-
ployed for the Vlasov equation.

4. bENcHMArK OF LINEAr AND NONLINEAr 
SIMULAtION rESULtS

In this section, linear and nonlinear simulation results 
are compared and benchmarked with those of Cheng and 
Knorr (1976). We take an initial condition of the form of  
Eq. (13) for both the linear and the nonlinear simulation.

The parameters employed in the linear simulation are 
exactly those of Cheng and Knorr (1976): the maximum 
cut-off velocity υmax = 4.0 υe, and 0 ≤ x ≤ 4π, and the mesh 
points are 8 and 32 for x and υ, respectively. In Fig. 2, the 
Landau damping phase is shown in terms of the electric field 
strength E . As in Cheng and Knorr (1976) the recurrence 

Fig. 1. Evolution of distribution functions in free streaming cases. (a) Distribution functions at a cross section x = 0 when Eq. (11) is taken as an 
initial condition. The thick solid line represents the initial distribution function. The time advanced distribution function is given by the black dots, 
while the analytical solution is given by the dash-dotted curve. (b) Time advanced distribution function at x = π (solid curve) and x = 3π (dash-dotted 
curve) when Eq. (13) is taken as an initial condition.

(a) (b)
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effect takes place after t = 42. Note that only the Fourier 
component k = 0.5 is kept and the other modes are filtered 
out in the linear calculation. A mesh point x = π is chosen 
for a diagnostic point in Fig. 2. 

The figure corresponds to Fig. 3 of Cheng and Knorr 
(1976) except that A = 0.01 instead of A = 0.5 is taken. The 
measured frequency and the damping rates are ω = 1.41 and 
γ = -0.155, respectively.

The nonlinear simulation is shown in Fig. 3. In the 
simulation of Fig. 3, A = 0.5 and k = 0.5 are taken. Figure 3a  
shows the time evolution of the electric field at a fixed point 
x = π. Instead of amonotonic decrease the saturation of the 
amplitude can be seen after t = 20. Figure 3b shows the dis-
tribution function at t = 75 at a fixed point x = π. In Fig. 3b, 
we can see a local flattening of the distribution function in 
the vicinity of the phase velocity. The phase velocity of the 
Langmuir wave estimated using the linear theory is ω/k = 
2.82.

Note that in the nonlinear simulation, as suggested 
in Cheng and Knorr (1976), the frequencies of all of the 
higher modes come into play at the later stage. As a result, 
resonance occurs at multiple locations in the velocity space 
and thus microscopic structures are generated [manifested 
as wrinkles in Cheng and Knorr (1976)] whose size can be 
comparable to the mesh size in the velocity space. To re-
solve all of the resonance one needs to employ an extremely 
high resolution in the velocity space.

5. EFFEctS OF KAPPA DIStrIbUtION FUNc-
tIONS

In this section we investigate the effects of high energy 

electrons by employing kappa distribution functions (Leub-
ner 2004) instead of a Maxwellian (for the initial condition). 
The kappa distribution function employed is given by

2f 1
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Note that the Maxwellian and kappa distribution functions 
are related

3
lim expf 22\y y-
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Fig. 2. Linear simulation results. Damping of the electric field strength 
E  is shown. Here, υmax = 4 υe, and 0 ≤ x ≤ 4π. The mesh points are 8 

and 32 for x and υ, respectively.

Fig. 3. Nonlinear simulation results: (a) time evolution of electric field 
strength E ; (b) the initial distribution function (black solid curve) 
and the distribution function at t = 75 (red solid curve), both given at 
x = π.

(a)

(b)
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The spatial distribution is given in the form of Eq. (13) for 
the initial condition, thus f (x, υ, 0) ~ [1 + A cos (kx)] f υ

 (υ) is 
given. We have normalized the kappa distribution function 
to satisfy d f 1y y =

3

3

y
-

^ h# , so that the effective number of 
electrons will be the same as in the Maxwellian case. Some 
of the notable features of the kappa distribution function are 
shown in Fig. 4. Figure 4a compares Maxwellian (black) 
and kappa distributions with l  = 1 (red). One can see a large 
population high-energy tail in the l  = 1 case. The func-
tions are plotted in logarithmic scales for l  = 1 (red) , l  =  
2 (green), l  = 5 (blue), and Maxwellian (black) cases in 
Fig. 4b.

Figure 5 shows the linear damping with cases when l  =  
1 (red), l  = 2 (green), and Maxwellian (black) are taken as 
initial distribution functions. The parameters employed are 
υmax = 10 υe, and 0 ≤ x ≤ 4π with 32 and 256 mesh points in 
x and υ. As in Fig. 2, we have taken A = 0.01 and k = 0.5.

With the kappa distribution function the Landau damp-
ing rate increases and the real frequency decreases (smaller 
l  has larger effects). The variation in the linear damping 
rate γ and the real frequencies ω are summarized in Figs. 6a  
and b as a function of l . The value l  varies from 1.0 to 10.0. 
The values plotted in both Figs. 6a and b are normalized by 
that of Maxwellian (thus in the figures, 1maxc c =-  and 

1max~ ~ =  for a Maxwellian initial condition).
From the linear theory (Landau 1946; Jackson 1960) 

the Landau damping rate is proportional to the slope of the 
distribution function at the phase velocity of the wave [see, 
for example, Nicholson (1992)]. Employing the measured 
real frequencies ω of Fig. 6b (and k = 0.5 for the wave num-
ber), the slope of the distribution function f2 yy y ^ h at the 
phase velocity ω/k is estimated and shown in Fig. 7. Smaller 
l  cases have more negative values (and thus larger damp-
ing rate) which supports the nature of Fig. 6a. For small 
values of k, these latter trends (damping rate increasing 
and the real frequency decreasing) are consistent with the 
analytical work (Chateau and Meyer-Vernet 1991; Sum-
mers and Thorne 1991; Thorne and Summers 1991). In the 
next section we conduct a direct comparison of the Vlasov 
simulation with the roots of the plasma dispersion relation 
by taking exactly the same distribution functions employed 
in Summers and Thorne (1991) and Thorne and Summers 
(1991).

Fig. 4. An example of kappa distribution function: (a) Maxwellian and 
l  = 1 function compared in regular scale; (b) l  = 1 (red), l  = 2 
(green), l  = 5 (blue), and Maxwellian (black) compared in a loga-
rithmic scale.

Fig. 5. Linear damping of electric field strength E  comparing the 
cases when Maxwellian (black) and l  = 1 (red) and l  = 2 distribution 
functions are taken as initial conditions.

(a)

(b)
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6. DIrEct cOMPArISON WItH MODIFIED 
PLASMA DISPErSION FUNctION

Using plasma dispersion function (Fried and Conte 
1961) analogy for Maxwellian, Summers and Thorne [Sum-
mers and Thorne (1991); Thorne and Summers (1991)] 
extended their work to the kappa distribution function. We 
compare the damping rate and real frequencies in our simu-
lation with their theoretical work for different values of к 
and different wave-numbers k. 

We used exactly the same distribution function em-
ployed in Summers and Thorne [Summers and Thorne 
(1991); Thorne and Summers (1991)] to see the match be-
tween the two. We took initial distribution function in the 
form (see Appendix)

f
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Note the difference in the exponent part (“ l- ” dependence 
instead of “ 1l- - ”) between Eqs. (16) and (14). 

Figure 8 plots the simulation results and numerical 
roots of the dispersion relation for l  = 2, 3, and 6 [repro-
duced from the modified dispersion function of Summers 
and Thorne (1991) and Thorne and Summers (1991)]. Fig-
ure 8a shows the damping rates versus the wave-numbers k. 
Figure 8b shows the real frequencies ω versus k. The roots 
from the (modified) dispersion relation are plotted as dash-
dotted curves. The black, red, and green dash-dotted curves 
are for l  = 2, 3, and 6, respectively.

Those obtained from the linear numerical simulation 
are plotted as black circles. The damping rate and the real 
frequencies are obtained from electric field oscillation sig-
nals at a fixed point x = π. We performed the survey only up 
to k = 2.0. When the linear damping rate and real frequency 
magnitudes become comparable, the measurement for γ and 
ω becomes troublesome. The dispersion relation from the 
initial value simulation compares favorably with that from 
the plasma dispersion function. With smaller l  values the 
real frequency decreases. Note that, however, with smaller 
к values the absolute value of the damping rates can also 
decrease for larger values of k, contrary to what we obtained 

Fig. 6. Effect of kappa function summarized: (a) damping rate normalized by the absolute value of damping rate with Maxwellian; (b) real frequency 
normalized by the value of frequency with Maxwellian.

Fig. 7. The absolute value of f2 yy ^ h at the phase velocity. For the 
phase velocity ω/k, the values of ω are employed from Fig. 6b. The 
plotted values are normalized by that of the Maxwellian.

(a) (b)
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in the previous section. The damping rates are a sensitive 
function of the local value f2y  where the resonant phase 
velocities “ω/k” are located at, and can vary depending on 
the wave-numbers k.

One of the advantages of the initial value approach 
is its application to nonlinear simulation. Our preliminary 
nonlinear simulation results employing a kappa distribution 
function as an initial condition are presented below. Figure 9  
shows the electron distribution functions suggesting long 
time evolution up to t = 1500. The distribution functions are 
given at a fixed point x = π. Figure 9a is for a Maxwellian 
and Fig. 9b is for a kappa distribution function (l  = 2). The 
dash-dotted curves are for t = 0 and the solid curves are for 
t = 1500. The integration of the distribution functions over 
the velocity space is the same for the two cases. The integra-
tion of the ion density over the configuration space is kept 
the same with the electron density (total numbers of ions 
and electrons in the system are the same). Figure 9 shows 
a relatively large cut-off velocity υ/υthe = 12.0 taken with a 
high resolution (1024 mesh points are taken in the velocity 
space). The l  = 2 distribution function has a larger popula-
tion at the high energy tail. In the simulation in Fig. 9, A = 
0.5 and k = 0.5 are taken. Figure 9c shows the local expan-
sion of Figs. 9a and b near the resonant phase velocities. In 
the figure the perpendicular lines suggest the phase veloci-
ties. Note that the dash-dotted black line changes into solid 
black line (frequency down-shift for Maxwellian) while the 
dash-dotted red line changes into solid red line (frequency 
up-shift for kappa function). Over a very long time scale the 
normal mode frequency changes and the distribution func-

Fig. 8. Comparison of the numerical roots of the dispersion relation and the simulation results: (a) the damping rates γ versus the wave vector k; (b) 
the real frequencies ω versus k. The roots from the (modified) dispersion relation are plotted as dash-dotted curves. The black, red, and green dash-
dotted curves are for l  = 2, 3, and 6, respectively. Black circles are obtained from linear numerical simulation. Numerical simulation is done for k 
= 0.5, 1.0, and 2.0 for l  = 2, 3, and 6. The simulation results are given at a fixed point x = π.

tions evolve toward a similar equilibrium state.

7. SUMMArY

This work revisited the splitting scheme and the simu-
lation results were compared with Cheng and Knorr (1976). 
Based on the code validation, as an initial exercise, we dis-
cussed the non-Maxwellian distribution function effect by 
employing the kappa-distribution function.

The slope [the absolute value of f2 yy ^ h] of the distri-
bution function at the phase velocity was estimated, which 
supports the nature of increasing damping rate at smaller l  
values. The simulation results compared favorably with the 
analyses based on the modified plasma dispersion function 
(Summers and Thorne 1991; Thorne and Summers 1991). 
The specific calculations that we demonstrated are for l  = 
2, 3, and 6, with the wave-numbers k = 0.5, 1.0 and 2.0. 
Our preliminary nonlinear simulation employing the kappa 
distribution function was presented.
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APPENDIX A: A brIEF rEVIEW OF MODIFIED 
PLASMA DISPErSION FUNctION

We reviewed the modified plasma dispersion function 
(the “Z *

l  function”) for kappa distribution functions (Sum-
mers and Thorne 1991). In this appendix, we invert the nota-
tion (see section 2); the values with bars are the normalized 
ones, and all other values are those before normalization. 
Neglecting the ion contribution and requiring the longitu-
dinal component of the dielectric tensor to be zero (Fried 
and Conte 1961), we obtain the Langmuir wave dispersion 
relation

n k d k
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2 2~ y
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#      (A1)

Here, we assumed a planer wave of the form exp (ikx-iωt) 
for all of the perturbed quantities, where i is the imaginary 
unit. Equation (A1) is exactly what we have in our Vlasov 
system employed for the numerical simulation. For a one 
dimensional Maxwellian

expf n
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by introducing the plasma dispersion function (the “Z func-

tion”, Fried and Conte 1961)
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we arrive at the well-known Langmuir wave dispersion re-
lation
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where t
2y  = 2Te

 /me = 2 e
2y . In contrast, Summers and Thorne 

(1991) employs a one dimensional kappa distribution func-
tion

f n
2 3 1 2

1 2 3e

0

3 2

2

y
r y l

l
l l

l
l
y

C

C
=

- -
+ -y

l-

^ ^
^ ch h
h m

(A5)

Here, e t dss 1

0
lC = 3 l- -^ h #  stands for Gamma function. Sub-

stituting Eq. (A5) into Eq. (A1) and by introducing a modi-
fied plasma dispersion function,
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we arrive at the dispersion relation for kappa distribution 
function
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where k2 3 e$p l l ~ y= - . Note that the exponent  
“ 1l- - ” in Eq. (A6) arises from taking a derivative on the 
right hand of Eq. (A5). A normalized dispersion relation is 
given by

Z k1 2
1 3 2

0* 2p p
l l
l

+ - +
-

=l ^ h     (A8)

where k k em= .
Following Thorne and Summers (1991), the root find-

ing algorithm employed in Fig. 8 is stated. We first let p  =  
x + iy, where x and y are real numbers. We then fix the y 
value and solve the imaginary part of the dispersion rela-
tion Eq. (A8), Im Z 0*p p =l ^ h6 @ , to obtain x. When both x 
and y are given, we solve the real part of Eq. (A8) for k  
by k = Re Z3 2 1 2 1 *l l l p p- - - l^ ^ ^h h h6 @ . Finally, the 
real frequencies and the damping rates are given by ~ =
k x 2 3l l-^ h  and k y 2 3c l l=- -^ h . As in section 2, 
the time scale is normalized by e

1~- . The black, red, and 
green curves in Fig. 8 are obtained by this latter algorithm.
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