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AbSTRACT

Forest carbon is accurately quantified by observing individual tree positions and heights. This paper proposes a novel 
algorithm for individual tree detection using Light Detection and Ranging (LiDAR) data in the Chollipo arboretum, South 
Korea. The proposed algorithm does not need to specify a proper window size for operation, taking advantage over the mostly 
used local maxima (LM) filtering for forest analysis. Four hundred twenty-nine treetops were detected and the average height 
and standard errors were 12.74 ± 0.24 m. Reference data were collected from two sources for verifying accuracy: field survey 
and visual interpretation. Overall, the result was overestimated but showed relatively high accuracy. The field survey detected 
87% of the trees with a coefficient of determination (R2) and root mean square error (RMSE) of 0.77 and 1.57 m, respec-
tively. The accuracy index (AI), which examines the correspondence between LiDAR detected and visually interpreted trees, 
was 91%. The average tree height error between on-site and LiDAR derived data was -1.42 ± 0.64 m and between visually 
interpreted and LiDAR derived data was -0.84 ± 0.10 m. This study emphasized the choice of algorithm and its parameters 
depending on forest conditions may influence the individual tree detection result. By comparing our work against previous 
studies, we found the tree location and height identification accuracy could be improved if different algorithms were used 
for different types of forests, as well as the LiDAR point density with each algorithm. This study suggests that more accurate 
individual tree detection could be obtained with different applications based on forest conditions.
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1. InTRoDUCTIon

Forests’ adaptation to climate change is critical, as they 
are the only global carbon sink recognized by the interna-
tional community (KFS 2009). According to the Intergov-
ernmental Panel on Climate Change (IPCC) 5th Assessment 
Report (AR5), Agriculture, Forestry, and Other Land Use 
(AFOLU) sectors contributed 24% of total anthropogenic 
emissions in 2010 (IPCC 2014; Tubiello et al. 2015). While 
all sectors excluding AFOLU increased Greenhouse Gas 
(GHG) emissions, land use sectors including forestry main-
tained similar levels as before due to decreasing deforesta-
tion and increasing reforestation. Therefore, forests are ex-
pected to be a net sink at the end of the 21st century. More 

reliable forest carbon stock estimation is required at the na-
tional and global scale to reduce GHG emissions efficiently 
(KFS 2013; IPCC 2014). Field measurement of all individu-
al trees is required for accurate forest carbon quantification. 
However, measuring carbon in forests is time-consuming, 
labor-intensive, and expensive. It is essential to apply re-
mote sensing techniques for forest carbon quantification to 
solve these issues (Popescu 2007; Park et al. 2011).

Aerial optical imagery has been widely applied for de-
cades in the previous forest investigation studies (Jakubows-
ki et al. 2013). It is difficult to quantify forest stocks because 
optical imagery collects spectral information in 2D (Cui et 
al. 2012). This is especially true for dense forests. Light De-
tection and Ranging (LiDAR) is used to observe individual 
tree information from remotely sensed data (Hyyppä et al. 
2001; Persson et al. 2002; Chen et al. 2006). Leckie et al. 
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(2003) mentioned that LiDAR could reduce large amounts of 
commission errors in falsely identified trees in open stands 
compared to optical imagery (Chen et al. 2006). LiDAR has 
the ability to acquire vertical tree information such as tree 
height using geo-registered 3D points (Kwak et al. 2007). 
With improved high point density (pts m-2), many studies 
have recently performed individual tree level analysis using 
program based algorithms and image segmentation methods 
as well as plot-level analysis (St-Onge et al. 1999; Persson 
et al. 2002; Clark et al. 2004, 2011; Chave et al. 2005). Ac-
curate individual tree detection is directly associated with 
more reliable forest carbon quantification.

Most recent studies on tree detection can be catego-
rized to five main methods: local maxima (LM) filtering 
(Popescu et al. 2002), region-growing (Kim et al. 2010), 
valley-following (Gougeon 1995), watershed segmentation 
(Kwak et al. 2007), and the integrated methods relying on 
LM (Eysn et al. 2015). LM filtering has been widely used to 
detect trees in remotely sensed images (Pouliot et al. 2002; 
Park et al. 2011). A LM was identified when the specified 
pixel value was higher than all neighboring pixels within 
a specified window size (Park et al. 2014). However, it is 
quite difficult to define an optimal window size using forest 
conditions. Inadequate window size could result in commis-
sion errors when the window size is too small and omission 
errors when the window size is too large (Blundell 2008).

This paper proposes an individual tree detection algo-
rithm coded using FORTRAN program language to over-
come the LM-filtering disadvantage, which needs to specify 
the window size. This algorithm was used to detect until it 
finds the tree top from the starting pixels regardless of the 
window size. After the first treetop is found, the algorithm 
is re-used from the first tree top pixel to identify the second 
treetop. In addition, we emphasize the forest condition such 
as climatic zone, species composition, forest structure, for-
est age, and so on when pouring algorithms.

Theoretically, a higher LiDAR point density could be 
more efficient for tree position and height detection (Eysn 
et al. 2015). Eysn et al. (2015) selected the different forest 
types using different algorithms for comparison accuracy. 
They found that the pilot area Pellizzano, with a maximum 
LiDAR point density of 121 pts m-2, showed the worst de-
tection results among all of the 8 pilot areas even with such 
extremely high point density. Thus, we found that LiDAR 
point density is not the only indicator that determines the 
tree detection result. Pelizzano consists of multi-storied 
mixed forest that has a large amount of trees with different 
height layers. In contrast, the best detection result occurred 
in a single-storied coniferous forest (Eysn et al. 2015). War-
ner et al. (1998) and Park et al. (2014) also mentioned that 
various types of forest conditions could result in distinctly 
different results due to different crown morphology charac-
teristics. Vauhkonen et al. (2012) referred to their previous 
published benchmark as not applicable to all forest types, 

and limited to some parts of a forest. Rahman and Gorte 
(2009) generated different datasets using the crown shape, 
density of understory vegetation, and forest type as pouring 
the same algorithm with equal LiDAR point density. The 
highest accuracy occurred with understory vegetation with 
a low-density pure forest. At this point, this study indicated 
that analysis accuracy could be applied differentially de-
pending on which algorithm was applied under the various 
forest conditions.

This study is detected individual trees using a FOR-
TRAN program based algorithm. A few individual tree de-
tection researches are analyzed using their study area forest 
type. We compared the differences in each result based on 
the different forest conditions. By understanding the differ-
ence in results between these researches under different for-
est conditions, effective algorithm usage can be determined, 
leading to more accurate tree detection results. Such higher 
accuracy detection results will contribute to reliable forest 
carbon stock quantification in the future.

2. MATeRIALS AnD MeTHoDS
2.1 Study Area

The study area is located at Chollipo arboretum in South 
Korea (see Fig. 1a; coordinates: longitude 126°8’59”E, lati-
tude 36°47’52”N) covering approximately 7.9 ha situated 
from 0 - 58 m above sea level. The average temperature 
in the study area was 12.6°C with average precipitation of 
721 mm. The arboretum holds more than 16000 plants and 
tree species. It is the biggest arboretum in South Korea. Ac-
cording to the 5th forest type map, based on sampling plot 
data from 2006 - 2010 (KFS 2013), the forest area is 3.3 ha 
with mixed forest. Even though the arboretum is character-
ized as a mixed forest type, there are a larger proportion of 
coniferous trees than deciduous trees. The diameter class of 
this study area is small which implies that the study area is 
comprised of small trees. The age class of the study area is 
class V (crown occupation rate of stand at 45 - 50 years old 
higher than 50%). The forest density is middle level (crown 
occupation rate of high trees higher than 51 - 70%). The 
overall forest condition of this study area is mono-storied 
mixed forest with decurrent crown shape (see Table 1).

2.2 Airborne LiDAR Data

We acquired LiDAR data on 16 December 2007 with 
a point density of 11 points per square meter (pts m-2). The 
minimum and maximum LiDAR data elevations were 0.8 
and 58.4 m, respectively (see Fig. 1b). Terrasolid’s TerraS-
can software (http://terrasolid.fi) with MicroStation 8.1 was 
used to pre-process the LiDAR data. Up to four echoes per 
pulse were recorded by the sensor. Raw LiDAR data was 
classified into the following two groups: first returns and last 
returns for the raw data rasterization. Digital Surface Model 

http://terrasolid.fi
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(DSM) and Digital Terrain Model (DTM) were generated 
from the first returns and last returns data, respectively. The 
Canopy Height Model (CHM) was built with a spatial reso-
lution of 1 m by subtracting corresponding DTM 1 m grid 
elevation from DSM 1 m grid (Kwak et al. 2010). The Trian-
gulated Irregular Network (TIN) interpolation method was 
performed to generate DSM, DTM, and CHM in the ArcGIS 
10.1 program. This process converted LiDAR points into 
raster format (Kwak et al. 2010; Jakubowski et al. 2013).

2.3 Individual Tree Detection Using LiDAR Data

An algorithm coded using FORTRAN program lan-
guage overcame the LM filtering method disadvantage to 
detect the individual trees and heights. LM filtering has 
mostly been used for tree detection requires a specified 
window size. Incorrect window size results in low analysis 
accuracy (Park et al. 2014). However, this algorithm de-
tects until its finds the first treetop (e.g., i, j = 3, 5) from the 
starting point (e.g., i, j = 0, 0). Afterwards the algorithm is 
re-utilized from the first tree top pixel (e.g., i, j = 3, 5) to 
identify the second tree top (e.g., i, j = 9, 12). Compared to 
LM filtering, which finds the tree top only inside the mov-
ing window, this algorithm has the advantage in detecting 
a tree regardless the specified window size. This algorithm 
was developed under the following three assumptions: (1) 
each individual tree has only one tree top; (2) a tree top rep-
resents the highest elevation of the tree; (3) canopy height is 
lower toward the outside from the top. Based on the above 
mentioned assumptions, the lowest inflection point would 
be identified as a tree top. This algorithm performs two pro-
cesses: data pre-processing and data analysis (see Fig. 2).

2.3.1 Data Pre-Processing

The proposed individual tree detection algorithm starts 
from CHM data, which indicates the relative height pixel 

between the first and last return with a raster format. We 
generated CHM data with 1 m spatial resolution (see sec-
tion 2.2) converted into digital numbers with the text format. 
Due to complicated scan pattern, some objects floating in 
the air could interrupt the reflected electromagnetic wave 
acquisition (Yoon 2015). Such interruptions could result in 
incorrect detection of an objective or an incorrect return to 
the sensor, resulting in a pixel value of 0 or abnormal value. 
For calibration, abnormal pixel values are replaced using the 
mean value of normal surrounding pixel values in a 3 × 3 m 
window using the following Eq. (1) (Yoon 2015).

( )a b b b b N1 2 7 8f= + + + +l  (1)

al: Calibrated pixel value;
b1, b2, …, bn: Normal surrounding values (n = 1 to 8);
N:  Number of normal surrounding values in each window 

(N = 8).
The laser beam often penetrates the branches, giving 

the canopy a very rough surface. An optimal smoothing 
process is essential to overcome this problem. Gaussian fil-
tering was performed to provide a more continuous surface 
value while eliminating statistical outliers (Brandtberg et al. 
2003). Gaussian filtering can effectively eliminate noise in 
an image by applying the following equation [see Eq. (2); 
Wang et al. 2004] where x and y represent the distance from 
the reference pixel in the horizontal and vertical axis, re-
spectively. In addition, v  represents standard deviations 
determining the degree of intensity and weight.

( , )g x y e
2

1 x y

2
2 2

2 2

rv
= v

- +
 (2)

The reference pixel in a 3 × 3 m kernel (v  = 3) is weight-
ed according to the distance based on Eq. (2) (Gu et al. 
2010). By adapting this process, systematic errors such as  

(a) (b)

Fig. 1. (a) Study area, (b) LiDAR data. (Color online only)
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separating one tree into several trees resulting in the over-
estimation of the number of individual trees can be avoided 
(Yoon 2015).

2.3.2 Data Analysis

The data analysis process is divided into four parts: (1) 
pixel top extraction, (2) detecting center pixel tops, (3) forest 
and non-forest area classification, (4) detecting treetops. As 
a first step in extracting pixel tops, the algorithm finds the 
highest pixel from the center pixel as a starting point until 
it reaches where the adjacent pixel is lower. While the pixel 
value continuously increases starting from the bottom to the 
top of the canopy, there is a point where an adjacent pixel 
value becomes instantly lower than the previous pixel (for 
example, pixel “A” which is shown in Fig. 3a). Based on the 
above mentioned algorithm assumption 3 (see section 2.3), 
we designate pixel “A” as the pixel top. An individual tree 
could have several pixel tops and not a single pixel. This is 
why we called pixel “A” a pixel top and not the treetop. This 
study used a scoring method to find the pixel with the high-
est value among the neighborhood of pixels (see Fig. 3b). 
This process operates in four directions: horizontal, vertical, 
45 degree, and 135 degree angle. If the center pixel value  
(i, j) is higher than its neighboring pixel value in the desig-
nated direction, the center pixel was given 1 point. If not, 
the pixel was given 0 point. If the center pixel earned a point 
in all directions, it would get total of 4 points and be as-
signed as a pixel top.

The pixel erosion process is designed to detect the 
highest center pixel tops among multiple pixel tops. The 
erosion technique is run in the counter clockwise direction 
four consecutive times (N"S, S"N, E"W, W"E) until it 
finds the center pixel tops by eroding the adjacent multiple 
pixel tops from outside to inside. In the next step, the vari-
ance value of the 3 × 3 m kernel is then calculated. In order 
to extract only the forest area among the center pixel tops, 
the optimal variance threshold is specified via trial and error 
according to the forest structure and tree characteristics in 
the study area. This value is used to classify the site into for-
est and non-forest areas. The center pixel tops located in the 

forest area are consequently designated as treetops.

2.4 Accuracy Assessment

The following two reference data sources are used 
commonly: field survey and visual interpretation (Ke and 
Quackenbush 2011; Park et al. 2014). Generally, the field 
survey produces more accurate results than visual inter-
pretation (Ke and Quackenbush 2011). However, the field 
survey has limitations in time, labor-force and expense 
compared to visual interpretation. Due to these restrictions, 
visual interpretation has been used as an alternative to field 
survey method since the early 1960s (Singh et al. 1986; Ke 
and Quackenbush 2011). Wang et al. (2004) and Lamar et 
al. (2005) mentioned that visual interpretation is limited in 
clearly identifying individual trees when the tree is small 
and identifying the crown shape due to different morpho-
logical characteristics. To overcome the constraints of each 
method and promote more reliable accuracy assessment, 
both visual interpretation and field survey are used. Thirty 
trees with heights ranging from 14 - 23 m were randomly 
chosen and field measured for the accuracy verification. Li-
DAR derived trees were found and their GPS coordinates 
obtained using the Montana 650 GPS device. In addition, 
the individual tree heights were measured. A time differ-
ence exists between the LiDAR acquisition date (2007) and 
field survey date (2014). The annual tree growth rate was 
applied to redeem this problem. The study area is located in 
Taean-gun, Chungcheongnam-do. The annual forest growth 
rate is 4.2% proposed by Korea Forest Institute. The growth 
rate was derived from the 5th national forest inventory based 
on sampling plot data from 2006 - 2010 (KFS 2013). In ad-
dition, visual interpretation was performed to overcome the 
limitation in the number of on-site samples. A randomly as-
signed circular plot with an area of 0.49 ha was installed to 
reduce the image acquisition error from seasonality, aerial 
images acquired in the winter (16 December 2007) and 
spring (22 March 2014), both used to identify individual 
trees with spatial resolutions of 25 cm and 1 m. CHM with 
1 m grid derived from airborne LiDAR images was set as 
reference data to aid visual segmentation in the 3D-view.

Fig. 2. Overall flow chart of this study.
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3. ReSULTS AnD DISCUSSIon
3.1 Detection of Individual Trees and Tree Height

The mean filter calibrated the abnormal data generated 
using CHM. Pixels that are 0 or less were replaced using 
the mean normal surrounding pixel values (see Figs. 4a, b). 
The Gaussian filtering method provided continuous surface 
value for image smoothing to prevent two peaks detected 
for one tree (see Figs. 4c, d).

The individual tree detection algorithm extracted 828 
pixel tops from objectives including trees, buildings, etc. 
Afterwards, the eroding process identified the center pixel 
among multiple pixel tops in single trees (see Fig. 5a). The 
average pixel top height was 7.08 ± 0.24 m ranging from 
0.08 - 50.72 m. This algorithm was utilized to designate 
center pixel tops in forest area as a treetop by first calculat-
ing the variance and specified optimal variance value via 
trial and error. Values higher than the threshold of 50 were 
considered forest areas while values lower than the thresh-
old was considered non-forest areas. Center pixel tops lo-
cated in the forest area are designated treetops. Four hun-
dred twenty-nine treetops were extracted in this procedure 
(see Figs. 5b, c). The average tree height is 12.74 ± 0.24 m 
ranging from 4.05 - 24.87 m with a standard deviation of 
4.97 m. Because the leaf-off period could interrupt analysis 
the leaf-out time was considered for each canopy. Seasonal 
effects could influence the growth of coniferous trees more 
than deciduous trees (Yoon et al. 2006; Lee 2008). Since Li-
DAR data was acquired during the leaf-off winter months, 
coniferous trees were visually identified using aerial images 
to confirm how well they were detected. We checked the 
coniferous tree detection result using field survey data. As 
shown in Fig. 5e, relatively high coniferous tree detection 
accuracy was identified visually despite the seasonal effect 
(see Figs. 5d, e).

3.2 Accuracy Verification
3.2.1 Accuracy Assessment by Field Survey

Both individual tree detection and tree height results 
were evaluated. A range of tree height from 14 - 23 m was 
randomly chosen for the field survey. Out of 30 LiDAR de-
rived trees, 26 were detected through field survey with an 
approximately 87% tree detection result. The accuracy rate 
in this study was higher than that for preceding researches. 
Yoon (2015) applied the same algorithm in tropical rain 
forest. However, it only showed 8.8% detection accuracy. 
Kim et al. (2010) analyzed at accuracy of 26 and 68% using 
region-growing and watershed segmentation based algo-
rithms. Field measured tree height was subsequently veri-
fied by targeting tree heights above 14 m and below 23 m. 
The coefficient of determination (R2) value and root mean 
square error (RMSE) were 0.77 and 1.57 m, respectively. 
The average error between LiDAR-predicted and field-
observed height was -1.42 ± 0.64 m. A negative average 
error value indicated that LiDAR derived trees were over-
estimated. This could be caused by several factors derived 
from field survey and LiDAR scan angle. The Haglof Ver-
texIII hypsometer was used in this study with accuracy for 
distance of 1% or better for the tree height measurement 
(Vasilescu 2013). Vasilescu (2013) mentioned that if the 
hypsometer was correctly calibrated, only one error could 
be caused by operator accuracy. Depending on where the 
operator set the sight line on the treetops, accuracy could be 
different. Hunter et al. (2013) also said that errors associated 
with the difficulty in designating tree tops may occur, re-
sulting in an underestimation or overestimation of measured 
tree height. It was reported that the laser scan angle could 
affect the individual tree detection error. If small trees were 
located next to bigger trees with few returns, it is difficult 
to detect them at the same time (Magnussen and Boudewyn 
1998; Næsset and Økland 2002; Brandtberg et al. 2003; 
Holmgren and Persson 2004).

3.2.2 Accuracy Assessment by Visual Interpretation

Remotely sensed visual imaging interpretation was con-
ducted to obtain evaluation that is more accurate. A randomly 

(a) (b)

Fig. 3. (a) Arrangement of pixels for the pixel top finding process, (b) detailed pixel tops detection algorithm.



Detecting Individual Tree and Height Using Airborne LiDAR 599

(a) (b)

(c) (d)

Fig. 4. (a) CHM with abnormal data, (b) abnormal data corrected CHM in 2D-view, (c) abnormal data corrected CHM in 3D-view, (d) smoothed 
CHM in 3D-view. (Color online only)

(a) (b)

(c) (d) (e)

Fig. 5. (a) Extract center pixel tops, (b) extract tree tops, (c) tree tops expressed in three dimensional CHM, (d) coniferous trees in CHM, (e) conifer-
ous trees in aerial images shooting in spring. (Color online only)



Kim et al.600

chosen 0.49 ha circular plot, visually segmented using three 
reference datasets with: aerial images acquired in winter (16 
December 2007) with a spatial resolution of 1 m, spring (22 
Marcg 2014) with a spatial resolution of 25 cm in 2D-view, 
and LiDAR derived CHM were used to delineate the crown 
for both 2D and 3D-views, as shown in Fig. 6.

The number of crowns designated to the number of 
trees in the reference plot. The total number of trees was 
104. Visually interpreted data accuracy verification used ac-
curacy index (AI) which is an accuracy index explained by 
the percentage used to examine the correspondence between 
LiDAR detected trees and visually interpreted trees (Ke and 
Quackenbush 2011). This AI defined by Pouliot et al. (2002) 
represents the overall accuracy, as shown in Eq. (3), where 
o and c represent the number of omission and commission 
errors, respectively. n is the total number of reference trees 
in Eq. (2). When the reference crowns are falsely assigned 
as multiple tree crowns commission errors occur. Omission 
errors occur when reference crowns are undetected.

(%) ( ) 100n
n o cAI #= - +  (3)

The total number of well-detected trees, falsely detected 
trees and omitted trees were 95, 3, and 6, respectively. 
The AI value of detected tree number was approximately 
91.35%, with high accuracy between LiDAR derived and 
visually segmented trees (see Table 2).

Omission errors indicating undetected trees occurred 
relatively higher than commission errors. This is likely due 
to the smoothing method and indistinct boundaries. Gaussian 
filtering used in this study has a tendency to reduce the depth 
of pits. Therefore, undetected small tree tops often occur 
(Kim et al. 2010). Secondly, indistinct boundaries between 
tree crowns in dense forest could result in omission errors 
(Park et al. 2014). Under such knowledge, forest condition 
comprehension could lead to more reliable interpretation 
and accurate results. This issue will be discussed in detail 
in section 3.3. In most researches using visual interpretation 
methods for accuracy assessment, treetops were visually in-
terpreted under the subjectivity of the interpreter. However, 
this can result in lower analysis accuracy depending on the 
interpreter’s judgment accuracy, including the uncertainty 
of segmenting tree crowns. Therefore, we applied different 
method to figure out the highest pixel which exists inside 
the visually interpreted canopy using 1 m grid CHM. The 
difference between visually observed and LiDAR-predicted 
height was -0.84 ± 0.10 m, indicating an average error. The 
visual interpretation result also indicated that tree detec-
tion using LiDAR data was overestimated. Consequently, 
both methods of assessing accuracy showed overestimation. 
Zhang et al. (2015) mentioned that far-extending branches 
might lead the identification to fail during the algorithm 

process. The Gaussian smoothing method selected in this 
study could also induce overestimation (Zhang et al. 2015). 
The standard error, standard deviation and range of errors 
were 0.1, 0.97, and 0 - 5 m, respectively. We calculated the 
R2, RMSE, and relative error (RE) values by height. Tree 
heights were classified into four groups: under 10, 10 - 15, 
15 - 20 m, and above 20 m (see Table 3). Their R2 values 
were 0.65, 0.69, 0.83, and 0.62, respectively.

The tree height group above 20 m had the lowest ac-
curacy rate, while the group ranging from 15 - 20 m had 
the highest accuracy rate. Theoretically, higher trees should 
increase the detection accuracy because other trees do not 
interrupt tall trees. However, compared to other groups, this 
group gathered in certain parts, causing them to be undetect-
ed or merged into one tree. Therefore, high density between 
big trees might have lowered the accuracy.

3.2.3 Comparison of Two Results of Accuracy  
Assessment

The visual interpretation and field data results were 
compared using individual trees ranging from 14 - 23 m. 
Visual interpretation was performed on all groups but field 
data was collected only on trees 14 - 23 m. Under the same 
condition, R2 values derived from both methods were 0.77 
and 0.88, respectively (see Fig. 7). Field survey generally 
showed higher accuracy compared to visual interpretation 
(Ke and Quackenbush 2011). However, the inaccuracy of 
visual interpretation cannot be ignored. Although visual in-
terpretation accuracy appeared to be higher than field sur-
vey, the two methods show similar accuracy because of the 
difference in sample numbers, 26 and 45. Visual interpreta-
tion has high uncertainty because of interpreter subjectiv-
ity as well as a larger number of samples than field survey. 
Furthermore, the study area contained mixed forest domi-
nated by trees even-aged from 45 - 50 years old. This could 
have caused difficulty in identifying tree crowns due to their 
dome-shape, and not the cone-shaped trees. Our results sug-
gest that a well-trained interpreter and high-resolution aerial 
images are needed to reduce uncertainties when evaluating 
LiDAR data using visual interpretation. In addition, inter-
pretation should consider forest characteristics and the ac-
quisition date of aerial images.

3.3 Comparison with Preceding Researches

Note that the choice of algorithm and its parameters us-
ing forest conditions may considerably affect individual tree 
detection results. Theoretically, a higher LiDAR point densi-
ty could be more efficient for tree detection in the forest. Eysn 
et al. (2015) realized a higher LiDAR point density might 
not produce more accurate detection results. One of his pilot 
sites, with 121 pts m-2, showed worse results among all of 
the 8 sites and it is considered due to the multi-storied mixed 
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forest characteristics with a number of trees having different 
height layers. Few individual tree detection researches and 
the characteristics of forests for respective studies have been 
extensively explored. Afterwards, we compared the differ-
ent results derived from each study and analyzed how forest 
conditions such as forest structure, crown shape, algorithm, 
etc. can influence tree detection accuracy.

Generally, individual tree detection algorithms are 
based on finding treetops under the assumption that the low-
est inflection point will be the treetops. It is worth comparing 
the accuracy because the inflection point could be influenced 

by the forest condition (see Table 1). Yoon (2015) applied 
the same algorithm used in this study area on a virgin dip-
terocarp mixed forest in Brunei. As a result, LiDAR derived 
individual trees were only 115 that occupied 8.8% compared 
to field measured trees. This low accuracy compared to this 
study was probably caused by different forest conditions. The 
forest in Yoon’s study (2015) is more complex with multi-
storied tropical rainforest, high forest density, high canopy 
cover, and morphologically different crown shapes. Smaller 
and younger dipterocarps in the understory have monopo-
dial crowns while the mature dipterocarps exhibit sympodial 

(a) (b) (c)

Fig. 6. Segmented tree crown by visual interpretation expressed in (a) aerial image, (b) 2D-view CHM, (c) 3D-view CHM. (Color online only)

Reference tree number 104 (99)*

Well-detected tree number 95

Commission error 3

omission error 6

AI (%) 91.35

Table 2. Accuracy index assessment.

Note: *:  Numbers of LiDAR derived individ-
ual trees.

Accuracy
Tree height (m)

< 10 10 - 15 15 - 20 > 20

R2 0.65 0.69 0.83 0.62

RMSE (m) 0.16 0.30 0.24 0.25

RE (m) 0.12 0.22 0.17 0.16

Table 3. Accuracy assessment by tree height between 
LiDAR derived height and visually interpreted height.

(a) (b)

Fig. 7. Accuracy assessment through (a) field survey, (b) visual interpretation.
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crowns with broader crown width than height (Kricher 2011; 
Yoon 2015). In other words, the crown shape in Yoon’s study 
area can unpredictably change with the stand age, i.e., each 
tree has various inflection points interrupting the analysis, 
which might have resulted in lower accuracy than that in our 
study because our study area is mono-storied with relatively 
low forest density.

Kwak et al. (2007) detected P. koraiensis (Korean 
Pine), L. leptolepis (Japanese Larch), and Quercus spp. 
(Oaks) in a pure forest, with R2 values of 0.68, 0.87, and 
0.67, respectively. Simultaneously, the accuracy assessment 
for tree heights was also performed with R2 values of 0.77, 
0.80, and 0.74, respectively. These results were similar to 
the results in this study. Pure forest tends to have easier con-
ditions permitting individual tree identification because it 
is much easier to extract inflection points in mixed forest 
with various species than in mixed forest. In contrast, Kwak 
et al. (2007) conducted their study under higher forest den-
sity conditions than our study. As previously emphasized in 
this study, tree detection algorithms are essential in finding 
the lowest inflection point, which is the treetop. Inflection 
points tend to be more easily defined in excurrent crown 
forms when the treetops are sharp. In addition, excurrent 
crown forms appear primarily in coniferous trees excluding 
high forest age. Therefore, coniferous trees can show higher 
accuracy than deciduous trees in finding inflection points.

Kim et al. (2010) detected a stand of even-aged 50-year-
old P. densiflora using fused aerial image and LiDAR data. 
Kim et al. (2010) detected 44 and 51 trees with a marker-
controlled segmentation and region growing method. These 
numbers are similar to the 47 on-site tree data in this study.

However, the numbers of well-detected trees ranged 
from 12 - 32. Although the study area was comprised of 
pure coniferous forest easily detected than deciduous or 
mixed forest, it showed relatively low accuracy. This might 
be because it is difficult to extract inflection points when the 
crown shape changes from excurrent form to decurrent form 
due to the increase in stand age. Kim et al. (2010) evaluated 
and observed tree heights by comparing the results with the 
average value. Average tree heights in field surveys and Li-
DAR data were 17.2 and 19.0 - 19.6 m, respectively. How-
ever, only average values were considered instead of one to 
one analysis, which makes it hard to compare our results to 
their results.

4. ConCLUSIon

The main objective of this study was to find the loca-
tion and assess the heights of individual trees using high 
accuracy airborne LiDAR data. A Fortran program based 
individual tree detection algorithm was used to redeem the 
preceding LM filter method limitation. The algorithm used 
in this this research runs regardless of the window size un-
like LM filter. This algorithm generates more accurate de-

tection results in comparison to other studies. Four hundred 
twenty-nine trees were detected in the first step, with aver-
age tree height of 12.74 ± 0.24 m. The height of individual 
trees was within the 4.05 - 24.87 m range having a standard 
deviation of 4.97 m. The second step assesses the accuracy 
using field survey and visual interpretation. According to 
the accuracy assessment by field survey, 87% of trees were 
detected. The average tree height error between on-site and 
LiDAR derived data was -1.42 ± 0.64 m which indicated 
that the analysis was overestimated. The visual interpreta-
tion AI value was 91.35% with three falsely detected trees 
and six omitted trees. The average visually interpreted and 
LiDAR derived data error was -0.84 ± 0.10 m, which also 
indicated the same overestimation as the field survey. The 
tree height R2 value showed the highest level of accuracy for 
detecting tree groups ranging from 15 - 20 m. The same tree 
ranges were used to compare the visual interpretation and 
field survey results. R2 values from the field survey and vi-
sual interpretation were 0.77 and 0.88, respectively. Consid-
ering that visual interpretation involves high uncertainties 
depending on the interpreter’s accuracy and limited number 
of on-site sample numbers than visual interpretation, it is 
considered to have similar detection accuracy.

Note the choice of algorithm and its parameters de-
pending on forest conditions may considerably influence 
individual tree detection results. We compared our results 
with the preceding research results to confirm how our al-
gorithm might be influenced by different forest conditions. 
This study detected 87% (on-site) trees and showed 91% 
AI of visual interpretation, resulting in better performances 
compared with previous studies. We could finally conclude 
that the choice of algorithm and its parameters depending 
on forest conditions may considerably influence detecting 
individual tree positions. We also found that LiDAR point 
density is not the only indicator that determines the tree de-
tection result. Future studies should analyze which algorithm 
generates the best tree detection result depending on the var-
ious types of forests under similar LiDAR point density.
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