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ABSTRACT

The particles trapped in the Earth’s inner radiation belts could harm low Earth or-
bit (LEO) satellites. Although the inner radiation belts are usually stable, their response 
to extremely large solar geomagnetic events can produce satellite anomalies. The risk 
is higher because of frequent LEO satellite passes through the South Atlantic Anomaly 
(SAA). A model for forecasting the trapped particle flux distribution in equatorial LEO 
based on the hierarchical Bayesian spatio-temporal (HBST) statistical model was de-
veloped to address the risk to satellites. This model is applicable to low- and medium-
energy electrons and protons under all solar activity conditions. Dynamic rather than 
static data were also used. A simple HBST model named the Gaussian process (GP) 
was developed using NOAA 15 - 17 data, which categorized particle energies as > 30 
keV (mep0e1) and > 300 keV (mep0e3) for electrons and 80 - 240 keV (mep0p2) and 
800 - 2500 keV (mep0p4) for protons in the SAA region. The goal of this study is to 
examine the applicability of this model during a quiet period (15 - 19 May 2009) and a 
period of high solar activity (26 - 30 October 2003). The forecast was then interpolated 
using a Kriging technique to estimate the particle distribution. Statistical and visual 
validations showed good indicators, with average mean relative error (MRE) values 
of 20 - 30% for both periods and a similar pattern as that of the National Oceanic and 
Atmospheric Administration (NOAA) map. This work contributes a method for pre-
dicting the trapped particle flux distribution at low latitude LEOs.

1. INTRODUCTION

Trapped atmospheric particles consist mostly of elec-
trons and protons trapped within Earth’s radiation belt. The 
existence of these particles was first discovered by James 
Van Allen using a Geiger-Mueller tube placed on board the 
Explorer I (Van Allen et al. 1958). The radiation belt is di-
vided into two parts, i.e., the inner belt and the outer belt. In 
the geomagnetic equator plane the inner belt is located typi-
cally between 1.2 and 3 Earth radius (RE) while the outer 
belt extends from about 3 to 7 RE (Ganushkina et al. 2011). 
The inner belt consists of high energy protons and electrons 
while the outer belt consists mainly of electrons with vari-

able flux during geomagnetic storms. The position of the 
inner and outer belts is a function of kinetic energy. The 
electron population has a two-zone structure of high intensi-
ties separated by a slot region typically at shells L = 2 - 3 
(McIlwain L-value), which may be filled during periods of 
increased geomagnetic activity. The electrons are lost in the 
slot region by mechanisms described by Moldwin (2007).

High energy protons occupy only the inner radiation 
belt. The presence of protons is believed to be a by-product 
of cosmic rays entering the Earth’s magnetosphere through 
a process called Cosmic Ray Albedo Neutron Decay 
(CRAND) (Prölss 2004; Bothmer and Daglis 2007; Vainio 
et al. 2009). In this mechanism the primary cosmic ray inter-
acts with the Earth’s atmosphere and creates neutrons. Parts 
of these neutrons are slowed down producing radionuclides 
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in the atmosphere, while another part escapes from the at-
mosphere without interaction. The neutrons then decay into 
protons and electrons and antineutrinos. If this decay pro-
cess occurs inside the radiation belt, protons and electrons 
become trapped. Another mechanism is believed to contrib-
ute to proton belt formation (Hudson et al. 2008; Vainio et 
al. 2009), the direct entry and trapping of solar protons dur-
ing solar particle events (Kress et al. 2005; Selesnick et al. 
2014). Electrons occupy both Van Allen belts. There are in-
ner and outer belts. Although the CRAND mechanism also 
generates electrons, the process is still too weak to produce 
electron radiation belts (Li and Temerin 2001). Electrons in 
the magnetosphere are derived from two sources, solar wind 
and the ionosphere (Li and Temerin 2001; Bothmer and Da-
glis 2007). The energy level of electrons in the ionosphere is 
around 1 eV whereas it is about 10 eV in the solar wind. Yet 
Earth’s electron belts have energy levels between 50 keV 
to 10 MeV. The combination of inward radial diffusion and 
pitch angle diffusion is important for producing the stably 
trapped flux of charged particles. Local acceleration is also 
an important source of radiation belt electrons.

In radial diffusion electrons diffuse towards the Earth as 
a result of large-scale electric and magnetic field fluctuations 
in the outer belt. These electrons are accelerated by betatron 
and Fermi processes. In local wave-particles interactions the 
electrons are accelerated by gyro resonance with waves that 
propagate through the heart of the radiation belts (Horne 2007; 
Millan and Baker 2012), and/or their pitch angle is changed 
which can lead to precipitation. Along with local precipita-
tion (pitch angle within the bounce loss cone), particles can 
undergo a smaller change in pitch angle. They then become 
“quasitrapped” and subsequently lost in the South Atlantic 
Anomaly (SAA) region in the course of their azimuthal drift 
(pitch angle within the drift loss cone). This study is focused 
on the inner radiation belt because it descends to a low alti-
tude over the SAA. The Earth magnetic field attenuation in 
the SAA occurs due to the Earth’s magnetic axis offset to its 
geographic counterpart (Asikainen and Mursula 2008). The 
location of the SAA centre is found to drift westwards with 
an average drift rate of about 0.24 deg year-1 and northward 
with an average drift rate of about 0.12 deg year-1 (Casadio 
and Arino 2011). Although the inner radiation belt population 
is stable in the long time scale [e.g., the lifetime of protons 
at E = 15 MeV at altitude 1000 km is about 300 days during 
solar maxima, and for higher energies and solar minima pe-
riod it is even longer (Hess 1962)], its’ reconfiguration dur-
ing strong geomagnetic disturbances can be a shorter. Looper 
et al. (2005) showed that at an altitude of 600 km the typical 
belt of energetic protons with E > 19 MeV almost completely 
disappeared at L = 2 related to extreme solar and geomag-
netic events in October - November 2003 and recovered to 
the pre-event configuration after only a few months.

Due to the importance of trapped particle distribution 
studies during major solar and geomagnetic events, we ex-

tend the previous work of Suparta and Gusrizal (2014a, b). 
The objective is to examine whether the hierarchical Bayes-
ian spatio-temporal (HBST) model can forecast trapped 
particles on quiet and severe days. Similar to our previous 
study, our model is evaluated over the SAA region because 
it has the densest trapped particle abundance in the equato-
rial region at low Earth orbit (LEO). High energy particles, 
especially in that region can cause significant problems for 
space missions. Heavy ions (up to certain energy) can be 
managed using mass shielding. The electrons can cause 
deep dielectric charging (e.g., Vampola 1987).

HBST model application to low-energy particles [elec-
trons and protons with energies of > 30 keV (mep0e1) and 80 
- 240 (mep0e2) keV, respectively] as well as medium-energy 
particles [electrons and protons with energies of > 300 keV 
(mep0e3) and 800 - 2500 keV (mep0p4), respectively] is eval-
uated. All of the data were recorded in the zenith position (0° 
direction), and the area is limited to L < 3 (McIlwain L-value) 
to avoid contamination issues with the National Oceanic and 
Atmospheric Administration (NOAA) Polar Orbiting Envi-
ronmental Satellite (POES) data (the detail will be explained 
in sub section 2.2). The model for quiet days on 15 - 19 May 
2009 is employed in this study. This quiet days have maxi-
mum geomagnetic indices of ΣKp = 24, Ap = 19, and Dst = 
-57 nT (occurred on 18 March 2003). Furthermore, the date of 
26 - 30 October 2003 is selected for days with high solar ac-
tivity (severe period). This severe period has maximum ΣKp 
= 56, Ap = 191, and Dst = -383 nT (occurred in 30 October 
2003). By selecting those types of solar activities, the accu-
racy of the HBST model on both quiet and severe days can be 
compared. The forecasting is performed on a daily basis and 
the results will be used to estimate the particle distribution 
over the SAA region. The HBST model forecasting results 
are displayed based on the geographical coordinates.

This paper will be organized as follows. In the next 
section an explanation of the methodology employed in this 
study is given. This section is divided into two parts: (1) 
the forecasting and estimation methods based on the HBST 
Gaussian process (GP) and Kriging interpolation techniques, 
and (2) the use of NOAA - Polar Orbiting Environmental 
(POES) data. In section 3, the statistical and visual analyses 
are presented. A summary and a discussion of future works 
are given in section 4.

2. METHODOLOGY
2.1 Forecasting and Estimation Methods
2.1.1 HBST Model

The HBST model is a method for expressing uncertain-
ties in spatio-temporal data through well-defined condition-
al probability levels in a Bayesian framework (Cressie and 
Wikle 2011). The terminology of Gelfand (2012) is used 
and the basic HBST representation is
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First stage: Data model [ ,Z E i ]
Second stage: Process model [E i ]
Third stage: Parameter model [i],
where Z is the data, E is a (hidden) process, and i  represents 
unknown parameters.

The notations used in this section (Sahu et al. 2015) 
will be introduced first. Let t be defined as time, where  
t = 1, …, T, and T is the total number of time units. Let  
T = 14. This is implemented by selecting data from T - 14 
to T as the model input and T + 1 for the forecasting day. 
This was selected after some trial and error, whereby, 1 day 
to 30 days of data were tested and 15 days data was found 
to be the most optimum in terms of accuracy and time con-
sumption. The trial and error results were utilized in three 
NOAA satellites data (NOAA 15 - 17). Z(si, t) is the loga-
rithmic value of protons or electrons at our defined area (the 
SAA). E(si, t) is denoted as a true value corresponding to 
Z(si, t) at the point of location si for i = 1, …, n at time 
t. The Z(si, t) and E(si, t) in vector notation are written as 

, , …, ,Z Z s t Z s tt i n= l^ ^h h6 @  and , , …, ,E E s t E s tt i n= l^ ^h h6 @ . 
All the observed data are denoted by z, and z* will yield all 
the missing data. Similarly, E denotes all Et, for t = 1, …, T,  
while the total number of observations to be modelled is 
defined by N, where N = nT. Generally, in Bayesian forecast 
modelling, there are p covariates denoted by Xt, which are 
represented in the form of a 1 × p vector. These covariates 
are variables that influence Z. The regression coefficients 
denoted by β are also represented by a 1 × p vector.

The notation , , ..., , (0, )s t s t N It n n1
2+e e e v= el^ ^h h6 @  is 

a white noise error process which is homogeneous in space 
and time where 2ve  is called the nugget effect. In is the n × n  
identity matrix. , , ..., , ( , )n s t n s t N 0t n n1 +h R= l^ ^h h6 @  is the 
spatially correlated error. , ; ,S s sn n i j

2 2l yv v zR = =h h ^ h is an 
n × n, variance-covariance matrix with i, j = 1, …, n. 2vh  is the 
site invariant common variance, while .; ,l yz^ h is the spa-
tial correlation matrix with spatial decay z  and smoothness 
parameter y . Both te  and th  are assumed to be independent 
of each other. Finally, i  is used to denote all the parameters 
used in our model [ , , , ,2 2 yi b v v z= e h^ h]. Thus, the HBST 
GP model (Banerjee et al. 2004) is written as follows:

Z Et t te= +  (1)

E Xt t thb= +  (2)

To carry out the forecasting value of Z at any location si for 
T + 1 day, the GP model is written as

, , ,Z s T E s T s T1 1 1i i ie+ = + + +^ ^ ^h h h (3)

, , ,s T s T s TE x1 1 1i i ihb+ = + + +l^ ^ ^h h h (4)

where ,x s T 1i +l ^ h is the covariate value at location si at 
time T + 1. To start the HSBT GP algorithm, the posterior 
predictive distribution of Z(s0, T + 1) for a given z (Sahu et 
al. 2015) is given by
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where , E zr i^ h is defined joint posterior distribution 
of E and i , while , , , , ,Z s T E E s T z1 10 0r i+ +^ ^h h6 @ = 

, , , ,Z s T E E s T1 10 0r i+ +^ ^h h6 @ because the conditional 
independence of ( , )Z s T 10 +  and Z given E. In the same way, 

( , )s TE 10 +  does not depend on Z given E. Consequently, 
( , 1) ,E s T z0r i+6 @ can be replaced by ( , )E s T 10r i+6 @.
The Bayesian GP model is completed by assuming 

suitable prior distributions for the underlying parameters 
described in , , , ,2 2 yi b v v z= e h^ h. To simplify the work, 
the model’s parameter is divided into three different types: 
the mean (i.e., b), the variances ,2 2v ve h^ h, and the correla-
tion , yz^ h. A normal distribution for b  with mean = 0 and 
variance = 1010 is specified. This assumes a flat distribution 
for the data. As no covariates are given by the NOAA data, 
the intercept value is applied instead of b . Furthermore, 
the variances and the decay parameters with mean = a/b 
and variance = a/b2 are given by gamma distributions with  
a = 2 and b = 1 to have a proper prior distribution. The 
smoothing parameter (y) is estimated using a discrete uni-
form distribution with values from 0 to 1.5 and increments 
of 0.05 (Bakar and Sahu 2015).

Below is a summary of the HBST GP T + 1 forecast 
algorithm, where Monte Carlo Markov Chain (MCMC) 
Gibbs sampling is used with j iterations, (1) determine ( )ji  
and E( )j  to form Eq. (5); (2) determine ,E s T 1( )j

0 +^ h from 
,N x ( ) ( )

T
j j

1
2b vh+l6 @. Finally, determine ,Z s T 1( )j

0 +^ h from 
, ,N E s T 1( ) ( )j j
0

2v+ h^ h6 @.

2.1.2 Estimation Method

The HBST GP forecast results in this work are the flux 
values for mep0e1, mep0e3, mep0p2, and mep0p4 in each 
grid on the forecasted date, which will later be defined in 
section 2.2. The Kriging interpolation is then performed for 
all forecasted grid values to determine the distribution of 
solar trapped particles over the SAA region.

In the previous work Suparta et al. (2013) used a sim-
ple Kriging method to obtain the entire flux distribution 
over the SAA region. In this work Kriging is improved us-
ing a universal Kriging method. Consider the general spatial 
model given by the equation

( ) ( ) ( ),Y s s s s R!fn= +  (6)
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where Y(s1), …, Y(sn) defines random variables values at lo-
cation s1, …, sn, ( )sn  is the mean or spatial trend of Y(s), 
and ( )sf  is the deviation of Y(s) from its mean. As opposed 
to this simple Kriging, universal Kriging assumes that sn

is unknown and varies spatially. Therefore, the universal 
Kriging stochastic process becomes

( ) ( ) ( ),Y s x s s s R!fb= +l  (7)

where ( ) ( )s x sn b= l  and ( )x s l denote a column vector of 
spatial attributes (covariates) and b  is the covariates coef-
ficient.

Based on the modified spatial modelling framework in 
Eq. (7) the universal Kriging task is to determine the best 
linear unbiased (BLU) prediction for the value of Y, ( )Y s0W , 
at unobserved location s0 (as illustrated in Fig. 1). According 
to the linear prediction hypothesis the predictor ( )Y Y s0 0=Y W  
is in the form

Y Y0 0m= lY  (8)

where 0m  is the weight vector of s0. Note that Eq. (8) in de-
rived from Eq. (7) in two steps:
(1)  Develop a BLU estimator, nbW , of b  based on the entire 

set of sample data Yn, x V X X V Yn n
1 1 1b = - - -l l^ hW , where X 

denotes the matrix of all covariates and V is the general 
covariance matrix for f .

(2)  Utilize the sample residuals, Y X n0f b= -V W , to acquire 
the universal Kriging predictor, c V0 0 0

1f f= -lV V , of 0f , and 
rearrange as Y x n0 0 0fb= +lY Y Y , where c0  is the covariance 
of 0f  and x0  is the vector of covariates at the prediction 
location s0 .

The prediction error in this Kriging method is con-
structed using the mean squared prediction error. In geosta-
tistics terminology, this value is often called the estimation 
variance or the Kriging variance ( 2

v0W ). The universal Krig-
ing variance is then expressed as follows:

c V c
x x V c X V X x X V c
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2 2
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0 0 0
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0
1

0 0 0
1
0

v v= - +
- -

-

- - - -

l

l l l l

^
^ ^ ^

h
h h h

W
 (9)

where 2v  is the variance of unknown error 0f , X0  is the 
covariates matrix at s0 , and ( )covV Y0 = . The details for uni-
versal Kriging can be found in Cressie (1993) and Bailey 
and Gatrell (1995).

2.2 NOAA-POES Data

The NOAA/POES satellites have a nearly circular orbit 
with an altitude of approximately 800 - 850 km and orbit pe-
riod of approximately 1 h 40 min. The satellites are equipped 

with a medium-energy proton electron detector (MEPED), 
which is a part of the Space Environment Monitor (SEM-2) 
module. The MEPED instrument measures particles in two 
directions: 0° and 90°. The 0° direction is roughly parallel 
to the vertical direction, whereas the 90° direction is perpen-
dicular to the vertical direction. At low latitudes the 0° di-
rection measures trapped particles, whereas at high latitudes 
it measures precipitating particles. The opposite conditions 
occur in the 90° direction. Therefore, because this study is 
focused on low latitudes the 0° direction data is employed 
(Asikainen and Mursula 2008).

The MEPED data suffers from contamination. Table 1 
compiled the MEPED energy channel contamination values 
adapted from Rodger et al. (2010) and Yando et al. (2011). 
Based on Rodger et al. (2010), electron contamination occurs 
at L > 7 in the 90° direction and at L > 4 in the 0° direction. 
Therefore, the electron data for L < 3 will be used in this 
research. However, since P6 channel (mep0p6) is contami-
nated the P4 channel is used to represent high energy proton 
channels. In the previous work, data from one satellite was 
examined and found that many missing values in the vali-
dation process. To solve this problem combined data from 
multiple NOAA satellite series, i.e., NOAA 15 - 17 is used.

The ability of our model to produce accurate forecasts 
during quiet periods and periods of high solar activity are 
examined. A solar superstorm event occurred on 28 Octo-
ber 2003, often referred to as the “Halloween storm”, was 
selected for this purpose. This allowed the consideration of 
occasions when a superstorm increases the flux of trapped 
particles (Shprits et al. 2011). Therefore, 15 - 19 May 2009 
for the quiet period and 26 - 30 October 2003 for the period 
of high solar activity are employed. Five days of simultane-
ous forecasting from D - 2 to D + 2 of the event to study 
the particle flux trends before and after the event were per-
formed. Two weeks of data were used in the model fitting 
to obtain the forecast for a given day. In other words, to 
forecast the particle flux value at day T + 1, the data from 
T - 14 to T were used as the model fitting input.

The challenging aspect of trapped particle forecasting 
in the Bayesian modelling framework is the inadequacy of 
data and the dynamics of points observed by the NOAA (as 
in Fig. 2). The 1° × 1° area will be computed and observed 
once every two months. Therefore, it is difficult to examine 
the data trend as time series data. The area using a certain 
interval of longitude and latitude is gridded to examine the 
flux trend as time series data. The model region is limited 
at -90° to +40° longitude and 0° to -40° latitude. The same 
gridding system from the previous work was used, which 
is a 5° longitude × 5° latitude gridding system. The area is 
also divided into several latitude ranges (λ1 - λ6) based on 
the latitude required to reduce the computational time. For 
each range, three grid points are maintained as validation 
points, and they are not included in our model fitting process  
(Fig. 2).
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3. RESULTS
3.1 Statistical Analysis

The HBST GP forecasting process is performed by 
employing the MCMC-Gibbs sampling method as imple-
mented in the spTimer package (Bakar and Sahu 2015) in 
the R language (R Core Team 2014). The spTimer iteration 
default is 13000 iterations, where the first 3000 iterations 
are discarded to avoid the starting value effects. A statistical 
validation is performed to examine the HBST model fore-
casting accuracy for the quiet period (15 - 19 May 2009) 

and the high solar activity period (26 - 30 October 2003). 
This validation is performed by comparing the forecasting 
value for each day with the value from the NOAA 15 - 17 
observation data for that day for the validation points. As 
mentioned in section 2.2 (Fig. 2), three random points in 
each range were selected as the validation points. These 
validation points were not included in the model fitting for 
the MCMC Gibbs sampling process.

Three validation parameters are used in the statistical 
analysis: the mean absolute error (MAE), mean relative er-
ror (MRE), and relative bias (rBIAS).

Fig. 1. Basic illustration of Kriging framework. (Color online only)

Data Channel Energy Pass band Direction Contaminant

e1 > 30 keV 0°, 90° 210 - 2700 keV proton

e2 > 100 keV 0°, 90° 280 - 2700 keV proton

e3 > 300 keV 0°, 90° 440 - 2700 keV proton

P1 30 - 80 keV 0°, 90° none

P2 80 - 240 keV 0°, 90° none

P3 240 - 800 keV 0°, 90° none

P4 800 - 2500 keV 0°, 90° none

P5 2500 - 6900 keV 0°, 90° none

P6 > 6900 keV 0°, 90° > 800 keV electron

Table 1. The contamination of MEPED energy channels values.

Fig. 2. The area gridding system. (Color online only)
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n z z1MAE ii
n
1= -= iT/  (10)

n z
z z1MRE

i

i
i
n
1= -

=
iT/  (11)

nz z z1rBIAS ii
n
1= -= i^ hT/  (12)

where n represents the total number of observations, zi rep-
resents the observed data indexed by i, ziT  denotes the pre-
dicted values and z  and zp  are the means of the observed 
and predicted values. The MAE and rBIAS have the same 
units as the data (logarithmic flux), and the MRE is ex-
pressed as a percentage (Figs. 3 - 6).

Figures 3 - 6 show the validation results for both elec-
trons and protons, with Figs. 3 and 4 showing the quiet period 
(15 - 19 May 2009) and Figs. 5 and 6 showing a high-solar-
activity event (26 - 30 October 2003). From Figs. 5a and 6a, 
the MAE values for mep0e1, mep0e3, mep0p2, and mep0p4 
from 15 - 19 May 2009 are observed as having average values 
less than 1 except for 17 May 2009, where mep0e3, mep0p2, 
and mep0p4 have values greater than 1. The HBST model ac-
curacy for the quiet period is determined by the MRE values  
[see Figs. 3b (i - ii) and 4b (i - ii)]. The average MRE values 
for all of the particles indicate that the HBST GP forecast-
ing model accuracy exceeds 75 - 80% for mep0e1 and is 
approximately 66 - 75% for mep0e3, mep0p2, and mep0p4 
on quiet days. The minimum accuracy only occurs on 17 
May 2009, which indicates that a high variability in particle 
flux occurred. In addition, Figs. 3c (i - ii) and 4c (i - ii) show 
underestimated biases for almost all of the range except in 
λ1 for mep0e1 and mep0p4 and λ6 and λ8 for every range 
that experiences the overestimate biases. No identical trend 
occurs in the statistical validation results on corresponding 
quiet days.

In the severe period (Figs. 5 and 6), the MAE of all of 
the particles are below 1 except for mep0e3 [Fig. 5b (ii)], 
which has a value of 1. The HBST model accuracy during the 
severe period is 80 - 85% for mep0e1, 73 - 75% for mep0e3, 
70 - 80% for mep0p2, and 69 - 77% for mep0p4. In addition, 
underestimated biases are observed for all of the particles in 
all ranges except λ1, λ4, λ6, and λ8 (Figs. 5c and 6c). Based 
on the validation results for both events, the HBST model 
provides appropriate estimations for the quiet and severe 
events and has an accuracy of approximately 70 - 80%.

3.2 Visual Analysis

A visual analysis is performed by comparing NOAA’s 
particle flux maps for those particles generated by the Krig-
ing method for the forecasting results. The R fields pack-
age is used for the Kriging method (Furrer et al. 2013). We 
will also compare our result with the NASA AE-8 and AP-8 

(Vette 1991a, b) forecasting during the selected periods. 
Figure 7 represents NOAA’s map of electron and proton 
fluxes during the quiet period while the high solar activity 
maps are seen in Fig. 8. The area shown in Figs. 7 and 8 is 
the entire globe. To examine the dynamics of particle move-
ment during the quiet and high solar activity periods, the 
entire globe is displayed rather than only the SAA region. 
From Fig. 7 there were no significant changes in the elec-
tron and proton distributions for mep0e1, mep0e3, mep0p2, 
and mep0p4 during the quiet days. However, striations can 
be observed for both the electrons and protons for severe 
days on the NOAA map shown in Figs. 8a and c. The black 
dotted area also appears on the mep0p4 distribution map on 
quiet and severe days (Figs. 8d and 9d) and is the result of a 
lack of data from NOAA satellites for that particle and also 
produces the NaN for the mep0p4 rBIAS validation at λ4 on 
30 October 2003 [Fig. 6c (ii)].

Figure 9 shows the NASA AE-8 and AP-8 forecasting 
results for all types of particles during both periods. The 
SPENVIS system (Heynderickx et al. 2004) is used to im-
plement the NASA AE-8 and AP-8 models (Vette 1991a, b). 
The altitude parameter is set to 800 km to match NOAA’s 
altitude and the inclination is set to 50° to cover the SAA 
region. The AE and AP maxima for the high solar activity 
period are determined, whereas the AE and AP minima for 
the quiet period are used. As shown in Fig. 9 the particle 
distributions produced by the NASA AP and AE models did 
not show significant changes for either event. The SPEN-
VIS map for mep0p2 and mep0p4 (Figs. 9c and d) showed 
a different pattern from that of the NOAA map. The center 
of the SAA in this AP model result is located too far toward 
the bottom compared to the NOAA result. As for the severe 
period, the AP and AE results did not produce a significant 
increase in the particle flux and the particle precipitation 
pattern. The significant biases in the fluxes were also higher 
than those in the NOAA fluxes (Fig. 8).

The comparison of NOAA’s maps with our forecasting 
maps for both events (Figs. 10 and 11) indicates a similarity 
pattern. The average bias produced by our model remains 
below 1 and the variability in bias mentioned in the discus-
sion from the statistical validations is shown in Figs. 3 - 6. 
The Kriging variance analysis in the forecasting maps for 
both events demonstrates the high Kriging interpolation 
technique precision for determining the trapped particle dis-
tribution over the SAA region. The resulting variance values 
tend to be 0 (below 0.3).

4. DISCUSSION

From Figs. 3 and 4, no identical trend occurs in the sta-
tistical validation results on corresponding quiet days. The 
SAA core borders (range λ2 and λ7) also show relatively 
higher validation values which indicate that a high vari-
ability in particle flux occurred. As for the severe period, 
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the variability in particles occurs in a more varied range; 
λ2 and λ4 for mep0e1 and mep0e3 [Fig. 5a (i - ii)]; λ2, λ6, 
λ7 for mep0p2 [Fig. 6a (i)]; and λ5, λ6, λ7 for mep0p4. 
This indicates that during a solar event, the dynamic aspect 
of particles is different among others. The severe period 
also causes an increasing error following the solar storm.  
Figures 6b (i - ii) and 7b (i - ii) shows the errors reach the 
peak at λ4 and or λ5 for all particles on 30 October 2003.

The particle flux distribution in the NOAA map, as in-
dicated in Fig. 8, where striations probably occurred in the 
temporal effect, which corresponds to the globe coverage for 
one full day when NOAA crosses different neighbour lon-
gitudinal regions at different times. The strongest striations 
are characteristic for low energy particles (detectors mep0e1 
and mep0p2). During that interval a very strong geomagnetic 
activity was observed with Dst minimum reaching -383 nT 
on October 30, 23:00 UT [see Fig. 1 of Suparta et al. (2008) 
for more details]. The part of panels (i) - (iii) corresponds to 
a relatively quiet period with minimum Dst higher than -50 
nT. Part (iv) is for 29 October when the first abrupt change 
in Dst occurred (about -350 nT by the end of the day). The 
particle precipitation on 29 - 30 October 2003 occurred after 

a solar storm. Energetic electron data in the interplanetary 
region at ACE [see the Electron, Proton, and Alpha Moni-
tor (EPAM) data at the http://www.srl.caltech.edu/ACE/
ASC/level2/lvl2DATA_EPAM.html] indicate strong onset 
at ~12:00 UT on 28 October 2003. Despite that, there is no 
indication of increased electron flux in NOAA on the same 
day. Thus, there is approximately half a day delay between 
the appearance of energy in the interplanetary space (and in 
outer magnetosphere at high L) and the increases observed 
in the magnetosphere at low L at NOAA. This is probably 
related to the inward radial diffusion of electrons combined 
with their adiabatic acceleration.

From Fig. 9, NASA models AP-8 and AE-8 give inac-
curate values for fluxes and the SAA location. Even though 
those NASA models have been the de facto standard for 
the space industry for four decades, the models were de-
veloped in the 1970s using 38 satellite data collected from 
1958 - 1979 throughout two solar cycles (Vette 1991b). The 
dynamic nature of the space environment has changed since 
then making those models unsuitable for the trapped par-
ticle distribution. The NASA models must also be run with 
the same internal geomagnetic field models used to analyse 

Fig. 11. (A) Kriging estimations, (B) NOAA’s maps, and (C) Kriging variances for (a) mep0e1, (b) mep0e3, (c) mep0p2, and (d) mep0p4 during the 
period of high solar activity (as in Fig. 8). (Color online only)

http://www.srl.caltech.edu/ACE/ASC/level2/lvl2DATA_EPAM.html
http://www.srl.caltech.edu/ACE/ASC/level2/lvl2DATA_EPAM.html
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the data (Heynderickx et al. 1996) and as a result, a secular 
change in the magnetic field that influences the SAA lo-
cation is not accounted for. This aspect generates incorrect 
positions for flux values at low altitude (Lauenstein et al. 
2005). Finally, the static nature of the NASA models makes 
both models unable to detect a solar event compared to our 
HBST-GP model run with dynamic data.

5. CONCLUSIONS AND REMARKS

This paper has successfully demonstrated the imple-
mentation of an HBST GP model and a Kriging interpolation 
technique to forecast the trapped particle flux distribution at 
medium LEO altitudes. The model was applied to the SAA 
region, an area of densely trapped particles, during both quiet 
times (15 - 19 May 2009) and times of high solar activity (26 
- 30 October 2003) periods. This work also succeeded in us-
ing different approaches from other models that use dynamic 
data and are performed in various states of solar activity. This 
was accomplished by implementing the HBST GP model us-
ing NOAA 15 - 17 data for electron energies of > 30 and > 
300 keV as well as proton energies of 80 - 240 and 800 - 2500 
keV over the SAA region. The model was fitted by applying 
an MCMC Gibbs sampling using a 5° latitude × 5° longitude 
grid system over the SAA region. The forecasting result on a 
geographic coordinate system using the Kriging interpolation 
technique was also successfully displayed on the distribution 
map. Statistical validation analyses showed that the model 
was accurate for all particles in both events. Our model also 
produced preferable results to those produced by the NASA 
AE-8 and AP-8 models. The NASA models generated the 
same pattern for both periods and did not show increasing 
fluxes on severe days, whereas our model was capable of 
following the particle flux trend for both periods. The MRE 
of our model was 20 - 30%, which indicates that the model 
accuracy was approximately 70 - 80%. In addition, a visual 
analysis of our model indicated that the pattern for all of the 
particles were similar to that of NOAA’s map of observa-
tions, whereas the NASA models produced different patterns 
for mep0e2 and mep0p4.

The quality of the Kriging interpolation in terms of gen-
erating a distribution map over the entire SAA area was de-
termined based on its variance value. Analyses of all particle 
variances for both events indicate that the Kriging technique 
is adequate for developing a trapped particle flux distribu-
tion map. This conclusion is supported by the small values 
in the variances, which tended to be 0 (below 0.3). Based 
on this result, our model is recommended for use in daily 
trapped particle flux distribution forecasting at medium LEO 
altitudes in the equatorial region. Since the developed model 
is sensitive to the practical daily forecast trapped particle 
flux, this forecasting system still has limitations in estimat-
ing fluxes at any time and location in the SAA. The 1-day 
forecast that has been developed was based on the highest 

resolution available on the NOAA data and the limited ca-
pacity of existing computers to run the program with larger 
datasets. In the future the forecast model performance should 
be compared to that of the AE9/AP9/SPM climatological 
model when this model at the https://www.vdl.afrl.af.mil/
programs/ae9ap9/ is completely free to access.

The gridding process (averaging and centring) is also 
expected to produce a significant bias that can affect the 
forecast. Based on this conclusion, reducing the grid size 
to 2° longitude × 2° latitude or 1° longitude × 1° latitude 
is recommended in future studies. Using all the data from 
the NOAA satellite series (NOAA 15 - 19) may be consid-
ered to maximize the amount of data available. It is also 
important to have coverage for the SAA region and extend 
coverage to the entire equatorial region or globe. Model-
ling with data from the 90° direction may be considered to 
study the precipitation phenomena in the equatorial region. 
In terms of spacecraft radiation, calculating the radiation 
dose at the near equatorial low Earth orbit (NEqO) satel-
lites can be considered by expanding this method to perform 
long-term predictions of up to several years, which could be 
accomplished by employing one or two solar cycle periods 
of trapped particle data.
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