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ABSTRACT

Due to their all-weather, all-time and penetration characteristics, synthetic aper-
ture radar (SAR) images are frequently used to monitor ground targets. As a result, 
environmental changes via natural events or human activities can be observed by 
applying a change detection technique. Theoretically, SAR signals can be character-
ized as chaotic phenomena since the scattering of signals within a resolution cell can 
be summed coherently. Accordingly, an SAR signal can be represented by a spatial 
chaotic model (SCM) and characterized by its fractal dimension. In this study, two 
approaches for estimating fractal dimensions are conducted, which are estimated by 
the differential box-counting (DBC) and improved fractal dimension methods in the 
z-direction. Based on the spatial chaotic model, a simplified SAR image change de-
tection procedure is proposed. This method first calculates the differences in fractal 
dimensions among multitemporal SAR images to detect the changes in building and 
grass-recovery areas. Both the constant false alarm rate (CFAR) and support vector 
machine (SVM) are applied to classify the changed and unchanged areas, respective-
ly. The experimental results reveal that both the DBC and improved fractal dimen-
sion methods are similar for detecting changes in building areas. However, regarding 
the changes in grass recovery areas, the improved fractal dimension method outper-
forms the DBC method. The results also show that the SVM performs better than the 
CFAR for both building and grass areas.
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1. INTRODUCTION

Remote sensing is the most feasible approach for large-
scale land-surface change detection. Change detection tech-
niques have been used successfully in many applications, 
such as environmental monitoring, land-use/land-cover 
studies, damage assessments, agricultural surveys, surface 
deformation and urban change analyses (Chavez and Mack-
innon 1994; Bruzzone and Serpico 1997; Hame et al. 1998; 
Ridd and Liu 1998; Grover et al. 1999; Quegan et al. 2000; 
Chang et al. 2010). Change detection is a process that an-
alyzes a pair of remote sensing images acquired over the 
same geographical area at different times in order to iden-
tify changes that may have occurred between the considered 
acquisition dates (Bovolo and Bruzzone 2005). Two main 
approaches to the change detection problem have been pro-
posed: the supervised approach and unsupervised approach. 

The former is based on supervised classification methods, 
which require the availability of multitemporal ground-truth 
values to derive a suitable training set. The latter performs 
change detection by directly comparing multitemporal im-
ages. Because the generation of an appropriate multitempo-
ral ground-truth value is usually a difficult task, the use of 
effective unsupervised change detection methods is funda-
mental in many applications (Bruzzone and Prieto 2000). 
Lu has also provided a comprehensive exploration of all 
major change detection approaches found in the literature 
(Lu et al. 2004).

In this paper, we focus our attention on building and 
grass areas from synthetic aperture radar (SAR) images. It 
is quite difficult to detect changes directly from SAR im-
ages due to the speckle noise associated with SAR sensors. 
Speckle may be modeled as a correlated signal-dependent 
random phenomenon that often causes a low signal-to-noise 
ratio (SNR) in acquired images. Consequently, in the past, a 
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speckle reduction algorithm had to be used before a change 
detection technique could be applied. Due to the intrinsic 
complexity of the SAR data, both intensive preprocessing 
and effective data analysis techniques capable of dealing 
with multiplied speckle noise are required. Many adaptive 
filters for speckle reduction have been intensively investigat-
ed (Lee 1980; Frost et al. 1982; Lopes et al. 1990; Solbø and 
Eltoft 2004). Singh has also listed several major despeckling 
methods for SAR images (Singh and Shree 2017).

Change detection in SAR images is usually a three-step 
procedure: (1) image despeckling, (2) pixelwise compari-
son of two images, and (3) image thresholding (Bazi et al. 
2005; Bovolo and Bruzzone 2005; Tzeng and Chen 2007). 
Images applying the speckle reduction algorithm result in 
alterations of the SAR signal to some extent. In spite of 
its noisy appearance, speckling is indeed an SAR signal 
naturally. Hence, it can be represented by a spatial chaotic 
model (SCM). Tzeng and Chen (2007) adopted the differen-
tial box-counting (DBC) technique (Sarkar and Chaudhuri 
1994) to estimate the fractal dimension of an SAR image 
because it has been proven to be the least complex computa-
tionally, and it is easy to implement. When speckle has been 
modeled properly, the image despeckling process is no lon-
ger required. Therefore, the image despeckling process is 
substituted with the speckle model estimation in this paper.

Support vector machines are one type of supervised 
classification for the change detection problem. They can be 
used in many fields to help solve problems in various appli-
cations, especially environmental disasters. The detection of 
earthquakes and tsunami-induced changes can also utilize 
this method to detect disasters in the natural environment 
(Wieland et al. 2016). They can also combined signals from 
different sources, including microwave and optical images 
(Zeng et al. 2008). Since the SVM is a supervised classifica-
tion method, it selects several labeled samples for training 
to find the hyperplane for a decision boundary, and the re-
maining labeled samples are used for testing to evaluate the 
performance. If there are no labeled data available, super-
vised learning is not possible; therefore, some information 
about the ground truth data is needed to label samples for 
the SVM in this study.

In the following section, the spatial chaotic model, 
DBC, improved fractal dimension method in the z-direction 
and support vector machine are introduced. Based on the 
spatial chaotic model, a simplified SAR image change de-
tection procedure is presented in section 3. Then, this ap-
proach is applied to detect changes in building and grass 
areas in SAR images. Finally, some conclusive remarks are 
drawn from this study.

2. METHODOLOGY

Theoretically, SAR signals can be characterized as 
chaotic phenomena because the scattered signals within 

a resolution cell are summed coherently, which has been 
shown in many studies in the past (Goodman 1976; Leung 
and Haykin 1990; McDonald et al. 2002; Solbø and Eltoft 
2004). This phenomenon in SAR signals can be described 
by a nonlinear dynamical system. As a result, the model-
ing of SAR signals becomes a problem for chaotic system 
reconstructions from time series measurements (Leung et al. 
2002). Accordingly, an SAR signal can be represented by a 
SCM which is briefly introduced in the following section 
(Tzeng and Chen 2007).

2.1 Spatial Chaotic Model (SCM) and Differential  
Box-Counting (DBC)

A state-space model can describe the dynamics of a 
nonlinear system (Abarbanel 1996). Let x1(t), x2(t), …, xN(t) 
denote the state variables of a nonlinear dynamic system, 
where continuous time (t) is the independent variable, and N 
represents the order of the system. The form of a system of 
first-order differential equations is written as follows:

( ) ( )dt
d x t F x ti i i= 6 @    for i = 1, 2, ..., N (1)

where Fi(·) is the nonlinear function of its argument. Fractal 
dimensions characterize the geometric structure of a strange 
attractor and define the natural distribution of points for the 
attractor compared to that of the probability density func-
tion for a random variable. According to the details in a ref-
erence paper (Tzeng and Chen 2007), the equation can be 
written as follows:
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where q is an integer and H represents the Heaviside func-
tion. The function C(q, r) is the correlation function, which 
measures the probability of two points [x(n) and x(j)] on the 
attractor that are separated by a distance of r. This correla-
tion function C(q, r) can be rewritten when the number of 
data points (K) is large and the distance (r) is small.

,C q r r( )q D1= -^ h  (3)

where D represents the fractal dimension of the attractor. As 
a result, the geometric structure of a chaotic system can be 
characterized by its fractal dimension for SAR signals.

The DBC technique (Sarkar and Chaudhuri 1994) has 
proven to be the least computationally complex, and it is 
easily implemented; therefore, it is adopted in this study to 
estimate the fractal dimension of SAR images. The basic 
equation for the fractal dimension D is given by
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In the DBC technique, an image of size M × M is parti-
tioned into grids of size s × s, where M/2 ≥ s > 1, and s is an 
integer. Then, we have an estimation of r = s/M. One pixel 
in the image in 3-D space represents its position on the x-y 
plane, and the third coordinate (z) denotes its gray level. 
The x-y plane is partitioned into grids of size s × s. On each 
grid, there is a column of boxes of size s × s × s’. If the total 
number of gray levels is equal to G, then s’ = [G/M] × s. In 
grid (i, j), let the minimum and maximum gray levels of the 
image in the grid be gl and gu, respectively. The number of 
boxes between the minimum and maximum gray levels at 
grid (i, j) is counted by

,n i j g g 1r u l= - +^ h  (5)

Due to the differential nature of computing nr, this 
method is called the differential box-counting approach. 
Therefore, the total number of boxes in the whole region of 
interest is simply the summation of the number of boxes in 
all grids

,N n i j
,

r r
i j

= ^ h/  (6)

Nr is calculated for different values of r (i.e., different values 
of grid size s). The reason for counting Nr is to provide a bet-
ter coverage of boxes for the intensity range of the image. In 
a sense, the DBC approach makes an approximation for the 
difference in box height.

2.2 Improved Fractal Dimension

Sarkar and Chaudhuri (1994) showed that the DBC is 

among the best in terms of efficiency and dynamic range for 
fractal dimensions (FDs), but it has a lower accuracy. Some 
disadvantages of the DBC have also been discussed in other 
studies (Chen et al. 2003). They indicated some problems, 
including that the DBC may overcount the number of boxes 
covering the image intensity surface. Box counting does not 
precisely capture the estimation of the fractal dimension 
because it does not cover the image intensity surface suffi-
ciently enough, especially for high-changing surface imag-
es. If we only need three boxes to represent a high variation 
range, we do not need more boxes. As shown in the example 
in Fig. 1, if the boxes are appropriately shifted along the z-
direction, only three boxes rather than four boxes are suffi-
cient to demonstrate the gray-level variation in the intensity 
surface for the column of boxes. When the boxes are shifted 
along the z-direction, the improved number of boxes cover-
ing the image intensity surface should be no greater than the 
original number, which can be easily shown below.

ceil s
g g ceil s

g floor s
g1u l u l#

- + -c ` `m j j (7)

,n i j ceil s
g g 1

r
u l= - +^ ch m (8)

The function ceil rounds a number to the next largest in-
teger. Therefore, in this paper, we calculate the improved 
fractal dimension for comparison with the original DBC and 
intensity image.

2.3 Support Vector Machine (SVM)

Support vector machines (SVMs) are a kind of machine 
learning technique (Burges 1998). They can be applied to 
analyze data via regression and classification methods. In 
the case of classification, a hyperplane is generated to sepa-
rate different class groups for multidimensional features in 

Fig. 1. Estimation approach via the original fractal dimension and improved fractal dimension methods.
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high-dimensional space. To obtain the best decision bound-
ary, it is important to find the optimal hyperplane to separate 
labeled samples from different classes with the maximum 
margins. Given a particular hyperplane, we compute the 
distance from the hyperplane to the closest data point. The 
value that is twice this value is called the margin. In this 
study, we consider a nonlinear case.

Given a training set of Ns data points, the sign of f(x) 
gives the label of the sample.

( ) ,f x y x x bSign i i ii
Ns
1 $ a= +=^ h/  (9)

where ia  is the Lagrangian multiplier (i.e., support value), 
b represents the bias, Ns represents the set of support vec-
tors, and yi represents the class of data point i (+1 or -1). 
The value of f(x) denotes the distance in the tested instance 
from the separated hyperplane, and the sign indicates the 
class label.

The kernel is a function that simulates the projection 
of initial data onto a feature space with a higher dimension. 
There are many kernel functions available; however, a non-
linear SVM with a Gaussian radial basis function (RBF) is 
adopted in this study since it is the most popular kernel meth-
od among other studies on SAR data (Akbarizadeh 2012; 
Yekkehkhany et al. 2014) due to the relevance of the RBF 
kernel to SAR data, which has a Gaussian contribution.

, expx x x xk i ji j
2$c -= -^ ^h h (10)

3. RESULTS

The improved fractal estimation in the z-direction com-
pared with the intensity and DBC methods via the CFAR 
and SVM for SAR image change detection without a speck-
le reduction process is displayed in Fig. 2. The algorithm is 
summarized below:
(1)  Coregister the multitemporal image sets.
(2)  Estimate the fractal dimension of each data set with a 

moving window (M = 9) and grid size (s = 3) for both the 
DBC and improved fractal dimension methods.

(3)  Take the difference in the two fractal dimension images.
(4)  Perform the CFAR and SVM detections.
(5)  Evaluate the detection performance with Eq. (11).

A
ADR
s

c=  (11a)

A
A AFDR

un

d c= -  (11b)

A
A ALDR

s

s c= -  (11c)

The experimental results of the proposed approach 
were compared to those via the difference image (DI) meth-
od as reference. The detection performance was assessed 
by three detection evaluation measures: the detection rate 
(DR), which denotes the accuracy rate of a detected changed 
target; the false detection rate (FDR), which denotes the 
false alarm rate of a target that is actually unchanged but 
is identified as changed; and the loss detection rate (LDR), 
which denotes the missing rate of a target that has actually 
changed but is identified as unchanged. Let Standard Area 
(As) denote the target change area on the ground truth map, 
Unchanged Area (Aun) denote the area without change on 
the ground truth map, Detected Area (Ad) denote the areas 
classified as changed by the detection algorithm, and Cor-
rect Area (Ac) denote the intersection region of the Standard 
Area and Detected Area. The detection rate (DR), false de-
tection rate (FDR), and loss detection rate (LDR) detection 
measures are adopted from another paper (Qu et al. 2003), 
with a modification to the FDR that is more intuitive. The 
CFAR method is carried out by select a threshold so that the 
false alarm rate is less than a pre-determined constant while 
maximize the detection rate. In this paper, the definition of 
FDR is the same as false alarm rate, and LDR = 1 - DR.

Before the receiver operating characteristic (ROC) 
curve was employed in the signal detection theory, it was 
first used during World War II for the analysis of radar sig-
nals (Green and Swets 1966). An ROC curve is the most 
commonly used approach to diagnose the evaluation of a 
binary classifier system, as its threshold value varies. The 
perfect detection occurs when the ROC curve reaches the 
top left corner (i.e., where DR = 1 and FDR = 0). The advan-
tage of the ROC curve is that it can also determine optimal 
threshold values.

3.1 Study Area

The SAR images for the experiments are collected by 
Terra SAR-X, an Earth radar observation satellite at the X-
band (wavelength 31 mm, frequency 9.6 GHz). Because of 
their long wavelengths compared to the visible spectrum, 
microwaves can penetrate cloud cover, and they are less 
susceptible to the heaviest rainfall. Therefore, microwave 
properties allow for detection under almost all-weather con-
ditions. Staelin measured atmospheric absorption spectra 
and showed the relationship between frequency and zenith 
attenuation (Staelin 1966). The polarization mode is the 
strip map for dual polarization. This satellite is a high-reso-
lution radar satellite that has a spatial resolution up to 1 m. 
At a 514-km altitude, it passes nearly above both poles on 
Earth. This image scene is taken with an ascending orbit and 
looking to the right.

Both horizontal-horizontal (HH) and horizontal-vertical 
(HV) polarization of the Terra SAR-X on 14 August 2009 
and 21 June 2010, are used for the experiments. The image 
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scene is located in the Jiaxian township (Kaohsiung County) 
in southern Taiwan. The ground truth samples for the build-
ing and grass areas from the two test sites are selected for 
the performance evaluation. The buildings are prefabricated 
houses built on a flat area near the river. Figure 3a depicts an 
SAR image for intensity via HH polarization acquired on 14 
August 2009. Figure 3b shows an SAR image for intensity 

via HH polarization acquired on 21 June 2010, after rebuild-
ing and vegetation recovery. In this study, an accuracy as-
sessment is conducted for change detection in two test areas 
via the CFAR and SVM methods for the DI for intensity, the 
fractal dimension via the DBC and the improved fractal di-
mension methods. A landslide caused by Typhoon Morakot 
on 8 August 2009, is observed in the study area. Although 

Fig. 2. Flow chart of the proposed SAR image change detection procedure.

(a) (b)

Fig. 3. (a) The HH intensity SAR images show us a topographic map on 14 October 2009 that points out the changed area for buildings, changed 
area for grass and unchanged areas, which are indicated by white (thick lines), red (dashed lines), and blue (fine lines) boxes. (b) The HH intensity 
SAR images show us a topographic map on 21 June 2010 that points out the changed area for buildings, changed area for grass and unchanged areas, 
which are indicated by white (thick lines), red (dashed lines), and blue (fine lines) boxes.
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this area contains buildings, trees, rivers, and grass, the 
changes in buildings and the grass recovery were observed 
in the field survey on 12 November 2010. Therefore, build-
ing and grass areas are selected as the main focus in our ex-
periments. Figure 4 is an optical satellite image of test site on 
29 January 2010 from Google Maps as a reference image.

In addition to the CFAR, both the HH and HV bands 
are considered to detect changes in intensity and the fractal 
and improved fractal dimensions, respectively. A pixel is 
classified as a changed pixel if and only if that pixel has 
been classified changed in all bands of the image via the 
CFAR. The intensity bands are calculated from the real and 
imaginary parts of the raw data in the SAR image. Based 
on the intensity, we estimate the fractal and improved frac-
tal dimensions for change detection in this study. The SVM 
considers four bands: HH intensity, HV intensity, HH im-
proved fractal dimension, and HV improved fractal dimen-
sion. We randomly select 50% samples for training, and the 
rest are used for testing for the test area in this experiment.

The provided SAR image for intensity via HH polar-
ization is illustrated in Fig. 3; the ground truth data for the 
changed areas of buildings and grass and the unchanged ar-
eas are indicated by white (thick lines), red (dashed lines), 
and blue (fine lines) boxes, respectively.

3.1.1 Test Site 1

In Fig. 3a, the village was damaged by a landslide after 
the disaster. Figure 3b shows that the reconstruction of the 
prefabricated house was built on a flat area after one year 
and appeared as a bright area. A comparison of the detec-
tion performances was conducted for the DI for intensity, 
fractal dimension [9, 3] and improved fractal dimension via 

the CFAR and other methods [i.e., SVM, including 4 bands 
with the receiver operating characteristic (ROC) curve] and 
are shown in Fig. 5. The fractal dimension [9, 3] indicates a 
moving window of M = 9 and a grid size of s = 3, which per-
form well in our experiments. The fractal dimension of the 
DBC, the improved fractal dimension and the SVM all show 
good performances, with a very high detection rate and very 
low false detection rate. The DI for intensity is the worst 
among them. As shown in Fig. 5, the DR and FDR for the 
improved fractal dimension are similar to the original fractal 
dimensions. It does not show much improvement compared 
to the original fractal dimensions for detecting buildings. 
This is the main reason that the DI cannot distinguish the 
ROC curve for the original fractal dimensions, improved 
fractal dimensions and SVM when detecting buildings, but 
they are all much better than the DI for intensity.

3.1.2 Test Site 2

In the second test area, part of the grass in the SAR im-
age in Fig. 3a was removed after the landslide, and the grass 
grew back after a few months. The grass area is marked 
with a red box in Fig. 3b. The ROC curves for the grass 
area by using these approaches are drawn for an accuracy 
comparison. As in Fig. 6, the improved fractal dimensions 
outperformed the original fractal method. However, the 
intensity method results are better than the fractal results 
[9, 3], which can be observed in the histogram for fractal 
dimension formed from ground truths in Fig. 7. The sam-
ples from the unchanged area are highly overlapped with 
the changed area. However, the histogram for intensity in 
Fig. 8 shows that some differences in the histogram can be 
observed between changed and unchanged areas in band 1, 

Fig. 4. Ground truths via Google Maps on 29 January 2010.
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Fig. 5. ROC curve via the intensity, DBC, improved fractal and SVM methods for building areas.

Fig. 6. ROC curve via the intensity, DBC, improved fractal and SVM methods for grass area.

Fig. 7. A histogram of different fractal dimensions for grass in changed and unchanged areas via the ground truth values using different polariza-
tions (HH and HV).
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and the peaks in band 2 have better separation than those 
in band 1. Thus, change detection for the grass area can-
not be easily recognized by the fractal dimension approach 
only. To improve this performance, the SVM is conducted 
to separate the two areas with a hyperplane. With the four 
bands of HH intensity, HV intensity, HH improved fractal 
dimension, and HV improved fractal dimension, the ROC 
curve of the SVM shows the best performance among these 
four approaches. The ground truth values for the unchanged 
and changed areas are shown in Fig. 9, and Fig. 10 shows 
the change detection results of the test areas. The probabil-
ity of the FDR is chosen to be 5% based on the unchanged 
samples in the training set for intensity and fractal and im-
proved fractal dimension cases. The SVM method is con-
ducted with the libSVM software. The white pixels indicate 
the changes between the SAR images from different dates, 
and the black pixels indicate those that occurred in the un-
changed areas. Table 1 shows the results when the threshold 
is set with a fixed FDR of 5% for the unchanged area from 
the training set. This threshold is then applied to the test-
ing area to calculate the DR and FDR; therefore, the FDR 
in Table 1 varies from 0.1% (intensity difference) to 37% 
(SVM). In Table 2, the same procedure is conducted, but the 
threshold is set with a fixed FDR of 5% from the unchanged 
samples in the testing set, which are used directly as base-
lines for comparison. Both tables indicate that the improved 
fractal dimension outperforms the original fractal dimen-
sion for both building and grass sites. However, compared 
to the intensity feature, the DRs for both fractal dimension 
features are significantly better than those for intensity in 
the building sites but opposite those in the grass sites. By 
combining intensity and the improved fractal dimension 
features via the SVM, the accuracy is comparable to that 
of the fractal dimension for building sites but significantly 
improved for the grass sites.

4. DISCUSSION

There are several studies that have performed target 
detection based on fractal dimension. Our experimental re-
sults show that this feature is excellent for detecting build-
ings to eliminate noise or speckle without applying filters or 
other enhancement techniques. In addition, the ROC curve 
is very close to the upper-left corner, which indicates that 
the detection result is better than the others. The proposed 
improved fractal method performs similarly to the original 
fractal dimension when detecting building areas, but it has 
a significant improvement in grass areas. The main reason 
that the DR for the fractal dimension is worse than that for 
the intensity feature in grass sites is discussed. It can be 
easily observed that the histogram for the intensity feature 
can be obviously distinguished in changed and unchanged 
grass areas, especially in the HV polarization band. How-
ever, in the histogram for fractal dimensions, both changed 
and unchanged areas are similar for both grass and build-
ing areas, especially for noise and speckle. The ROC curves 
show that the improved fractal dimension is better than the 
original fractal feature, and an SVM with intensity and im-
proved fractal dimensions has the best accuracy for most 
of the FDRs. Only when the FDR is less than 4% is the 
SVM slightly worse than the intensity feature in the grass 
area. The changed building area does not show a signifi-
cant difference between the improved and original fractal 
dimensions in the ROC curve. In the detected results, the 
detected area is also similar. This is because the difference 
in estimated value between the two fractal dimensional 
approaches is small compared to the intensity difference 
for strong scatterers (i.e., buildings). A threshold value of 
5% for the FDR is set for the training and testing areas, 
and the DR and FDR of the testing area are calculated in  
Tables 1 and 2, respectively. Therefore, the detection rates 

Fig. 8. A histogram of different intensities for grass in changed and unchanged areas via the ground truth values using different polarizations (HH 
and HV).
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are quite different for grass, but both tables indicate the im-
proved performance of the improved fractal dimension and 
SVM methods.

5. CONCLUSION

A simple SAR image change detection procedure is 
presented based on the spatial chaotic model and improved 
fractal dimension method via the CFAR and SVM. Dif-
ferent methods are applied for a performance comparison 
between building and grass areas. The experimental results 
reveal that both fractal dimension methods are effective and 
more efficient than intensity for estimating building areas. 
The improved fractal dimension method is better than the 
original fractal dimension method for estimating grass areas 
from SAR images. For both building and grass areas, the 
experiment shows that the SVM with both HH and HV po-
larization for intensity and improved fractal dimensions has 
the best classification result. Therefore, both intensity and 
improved fractal dimension data should be considered for 
change detection in SAR images. The proposed method has 
demonstrated its capability for detecting change by combin-
ing intensity and improved fractal dimensions via the SVM 
with a dual-polarized SAR image. This method can be fur-
ther extended for full polarization if HH, HV, VH, and VV 
are available and more features can be included based on the 
target properties.

Building Intensity Fractal Improved Fractal SVM

Detection Rate 50.2% 99.6% 99.6% 97.0%

False Detection Rate 0.1% 1.7% 1% 0.2%

Loss Detection Rate 49.8% 0.4% 0.4% 3.0%

Grass Intensity Fractal Improved Fractal SVM

Detection Rate 11.5% 4.9% 4.7% 86.5%

False Detection Rate 0.1% 1.7% 1% 37.4%

Loss Detection Rate 88.5% 95.1% 95.3% 13.5%

Table 1. The results when the threshold is set with a fixed FDR of 5% for the 
unchanged area from the training set.

Building Intensity Fractal Improved Fractal SVM

Detection Rate 50.2% 98.5% 99.0% 97.6%

False Detection Rate 0.5% 0.5% 0.5% 0.5%

Loss Detection Rate 49.8% 1.5% 1.0% 2.4%

Grass Intensity Fractal Improved Fractal SVM

Detection Rate 37.7% 11.1% 16.3% 31.2%

False Detection Rate 0.5% 0.5% 0.5% 0.5%

Loss Detection Rate 62.3% 88.9% 83.7% 68.8%

Table 2. The results when the threshold is set with a fixed FDR of 5% for the 
unchanged area from the testing set.
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