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The method of determining a principal point of sunglint (PPS) on the
ocean surface by observation from geostationary orbit is described. To find
a PPS first a nonlinear equation is solved numerically, and then from one
transformation the coordinates (latitude and longitude) of the PPS are
obtained. The diurnal, seasonal and annual excursion of PPS are
investigated. The entry parameters of the problem are the time t and longi-
tude of satellite ϕ sat . The contour of the Sun disk image and its sizes on a
smooth ocean surface are studied. This method of finding PPS is then tested
upon the Earth’s image recorded from Meteosat satellites.
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1. INTRODUCTION

The study of the characteristics of light reflected from the sea surface is important in
optical remote sensing of physical and geometrical properties of the sea surface. For example,
average intensity of reflected sunlight at different angles of incidence and view gives the sta-
tistical distribution of surface slopes (Cox and Munk 1954). Thus, when properly calculated
and understood, the reflection of sunlight from the ocean surface, termed sunglint, can provide
useful information about the nature of the reflecting surface as well as processes occurring
nearby. In addition, this information is needed for careful selection of satellite orbit and sensor
viewing geometry in measurements, which consider solar reflection as a nuisance. For in-



TAO, Vol. 17, No. 1, March 2006254

stance in the paper Prakash et al. (1994) considered the problem of precise location of the PPS
that is determined by solving a system of non-linear equations in two variables using the
Newton-Raphson method, which includes difficulties connected with convergence.

The aim of this present work is to develop a comparatively simple method by which the
PPS can be determined by solving a nonlinear equation, opposite to the system of equations in
paper Prakash et al. (1994). This simplification has been reached by choosing a suitable refer-
ence plane, that is, the plane passing through the Sun’s center, Earth’s center and satellite.

Earth images recorded for a certain time from the geostationary orbit at the Meteosat
satellite are disseminated by the European Organization for the Exploitation of Meteorologi-
cal Satellites (EUMETSAT). The location of the PPS on these images depends on time t (which
is measured in terms of GMT) and on  position of satellite, determined by angle ϕ sat  of satel-
lite longitude. So far as the parameters t and ϕ sat  are known for any images, a method which
determines the PPS precisely for a given  t and ϕ sat , may be developed.

2. THE GEOMETRY AND BASIC RELATIONSHIP OF THE PROBLEM

The Earth, which is assumed to be an oblate spheroid, makes orbital motion around the
Sun and geostationary satellites produce observation of the Earth. The geometry of the prob-
lem is represented in Fig.1, where ADLPB is an arc of the equator; ASCB is an arc of section
of the orbital plane and Earth. The point O is the center of the Earth; the point Q is the position

Fig. 1. The geometry of the problem.
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of the geostationary satellite which is determined by the longitude ϕ sat . The arbitrary point M
on the Earth can be defined by angles α  (or ε  ) and β  (angle β  is measured from the refer-
ence plane SOP). The same point M can also be defined by angles of latitude, θ , and longitude
ϕ . The angle ϕ  = arc(PL), i.e., it is measured from the direction to satellite and therefore
differs from a real longitude of M by the angle ϕ sat . PPS is a point G on the arc SP, which
reflects the ray traveling from the centre of the Sun to the point of observation Q.

In the first step, the position of the Earth is determined by solving of Kepler’s equations of
the Earth’s orbital motion:

M E e E= − sin   , (1)

where, E is the eccentric anomaly, M is the mean anomaly. The eccentric anomaly E is con-
nected with true anomaly, Θ by equation:
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+
−











2

1
1 2

arctan tan 
e

e

E
   , (2)

where, e = 0.016729 is the eccentricity of  the Earth’s orbit. The mean anomaly relates to time
t (s) as,
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where, M kgs = ×1 989 1030.   is the Sun mass, G N m kg= × −6 672 1011 2 2.     is the gravitational
constant, a km= ×1 496 108.   semimajor axis of the elliptical Earth orbit. The solution (1) and
(2) gives dependence Θ Θ= ( )t , i.e., the position of the Earth on the orbit (see Fig. 1). There
are different numerical methods for solving Kepler’s equations (Taff 1985).

In the second step, at any time t the position of the satellite is determined. This means that
the angle:

ϕ ϕ ωQ sat t= +   , (3)

(ω π= 2 /T , T = 23.96 hours = 23.96 × 3600 sec. is the sidereal period of Earth’s rotation) is
defined. The time t(s) is reckoned from time instant: GMT = 0.00, 21 March. The angle
ψ = ∠SOQ  is found from:

cos sin cos cos sin cosψ θ ϕ θ ϕ δ= − +    , (4)

where   δ = ′23 27o   is the angle of inclination (declination). The angle α α= G , which determine
the PPS (the point G in Fig. 1), is found as a root of equation:
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2 0α ε α ψ+ − =( )   ,  (5)

and the angle β  of point G is β πG = . The function ε ε α= ( )  is given by:

ε ε α
τ α
τ α
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where τ ≈ 0 1513. . A behavior of ε ε α= ( )  was analyzed in (Gardashov and Barla 2001), where
it has been shown that the intervals in which α  and ε   changes is: 0° ≤ α  ≤ 81.30° and 0° ≤ ε
≤ 8.70°. Note, that locating the solar image is very similar to the problem of locating the point
of specular reflection from the Earth, which is solved in the radio science publications for a
more general case (Martin-Neira 1993).

There is no difficulty solving equation (5) using numerical methods. Because, it’s easy to
separate the interval in which the root is isolated and no problem of convergence of iteration
arises. Therefore, using the numerical methods the root of equation (5) can be obtained with
the needed tolerance.

The transformation from angles (α , β ) to angles of latitude θ  and longitude ϕ  of point M
can be performed using the formulas of spherical geometry:

sin sin sin( )

sin tan cot( )

θ α β π

ϕ θ β π

= ⋅ − +

= ⋅ − +
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P
   , (7)

where P SPA= ∠ . is determined by P = ⋅arcsin cos sin /sin ( )ϕ δ ψ . For the PPS (i.e., when
M G≡ )  α α= G  and β β π= =G  and from (6) we find angles θG  and ϕG  which are the position,
i.e.,latitude and longitude, of PPS.

Computing angles θG , ϕG  for different moments of time t described by the above method
the relationships θ θ ϕ ϕG G t t= =( ) ( ) , G G  are thus obtained, which in appropriate intervals of
changes of t gives diurnal, seasonal and annual excursion of PPS.

3. APPLICATION OF THE METHOD

The result of calculating this method for satellite “Meteosat” located at latitude ϕ sat = 63°
East is shown in Fig. 2. The thick lines for different months are the predicted diurnal path of
PPS as seen from the satellite. The annual excursion of PPS for the particular time of the day
is given by a closed curve. The seasonal excursion is included year to year and in Fig. 2 is
shown by star signs.

The asymmetric behavior of closed curves describing the annual excursion of PPS is
connected with the elliptical form of the Earth orbit (if formally takes the orbit as a cycle i.e.,
the eccentricity e = 0 then the curves becomes a symmetric form). In Fig. 3, the image of the
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Earth obtained from this satellite on 20 April, GMT = 09:00  is represented. The region occu-
pied by sunglint is clearly viewed. The coordinates for the center of this region are:  θ ≈ 5o,

  ϕ ≈ 54o which coincide with the coordinates of PPS, θG , ϕG  calculated by our method. In Fig.
2, PPS is shown by a star. The meridians and parallels on the image are drawn by using FOR-
TRAN programmer from EUMETSAT (The Meteosat Archive User Handbook 2001), which
produces transformation from numerical (line/pixel) coordinates of an image to geographical
(lat. /long.) coordinates.

The series of images in which sunglint appears clearly were analyzed by us. Some  images
of when the sunglint area is viewed are represented in Table 1.

As seen in Table 1, for all of these images the centers of occupied sunglint are located in
about the same locations for PPS calculated by the method described above for corresponding
time t and longitude of satellite ϕ sat .

4. THE CONTOUR OF THE SUN DISK IMAGE

Now suppose that the ocean’s surface is absolutely smooth and let us define the location
of the sunglint (i.e., Sun disk image on the ocean surface). Because the angular size of the Sun
is very small, but not zero, the images of the Sun on the ocean will also have finite sizes. The

Fig. 2. The annual excursion of PPS (closed curves) for the times GMT= 4,7,9,
10,11 and diurnal excursion (from East to West) and seasonal (from North
to South).
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Table 1. PPS coordinates derived from images and calculations.

Fig. 3. The Earth image recorded from Meteosat with parallel and meridian lines
designed using EUMETSAT program (21 April 2000, GMT: 09:00).

angles (α , β ) of point M at the contour of the Sun disk images satisfy the following equation
(Gardashov and Barla 2001; Kara et al. 2001).
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where γ s s sd R= =/ .0 54o linear angle of the Sun disk (diameter d kms = ×1 3914 106.   the di-
ameter of Sun, R kms = ×1 49 108.   the mean distance between the Earth and the Sun), ε ε α= ( ) ,
ε ε αG G= ( )  and θ α ε α= + ( ), θ α ε αG G G= + ( ) . Where, αG  corresponds to the ray going to Q
from the Sun disk center after reflection. Equation (8) in implicate form defines a function
α α β= b ( ), which describes the contour of the Sun disk image on the surface. Solving numeri-
cally equation (8), i.e., finding values α  for each values β  from a certain interval of changes
in β , we can draw a graphic of the function α α β= b ( ). The graphs of the function α α β= b ( ),
i.e., the contour of the Sun disk image, at the angles αG =45°, 60° and 72° are shown in Fig. 4.
The corresponding values of angle ψG , findings from the equation (5) are: ψG =96.83°, 128.07°
and 152.58°.

As can be seen the Sun disk image forms look elliptical. The Sun disk image diameters lα
and lβ  along the angles α  and β  can be estimated as follows (Gardashov and Barla 2001):

ψ α ε α ψ α ε α α= + = + ′2 2( ) ( )   ,   ∆ ∆ ∆   . (9)

If we take ∆ψ γ= s  (where   γ s s sd R= =/ .0 54o
, d kms = ×1 3914 106.   diameter of the Sun,

R kms = ×1 49 108.   mean distance between the Sun and the Earth) and α α= c  we have:
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We can also find that (where, R = 6378 km is Earth radius)

sin
sin sin

sin
sin

∆
∆

β γ
ψ

β
γ

ψ
α

ψ
γβ2 2 2

1=








 =−s

G

s

G

G

G
st

R
  = 2sin  and   , (11)

as αG → 0 we have:
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and we see that lα  = lβ  at αG = 0.
The values of the Sun disk image diameters lα  and lβ  along α  and β  for different α ψG Gor( ) 

are given in the Table 2.

5. CONCLUSION

When waves appear on the ocean surface the whole Sun disk image is divided into glints.
As the height of the surface waves increase the area that sun glitters occupy widens. The sizes
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Fig. 4. The forms and sizes of the glint at the angle ψG : (a) ψG =96.83°,
(αG =45°); (b) ψG =128.07°, (αG =60°) ; (c) ψG =152.58°, (αG =72°).

Table 2. The values of linear sizes lα  and lβ  of the Sun disk image.
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of this region and distribution of glitter brightness in this region depend on wind and wave
fields. Consequently, from the sunglint images of the ocean surface these field parameters can
be derived. The accuracy of this method will basically be determined by the accuracy of atmo-
spheric influence and surface slope distribution functions. Supposing that ocean wave charac-
teristics in the observation region of sunglint are homogeneous, the calculation of wave and
wind parameters can be produced (Prakash et al. 1994; Khattak et al. 1991). In this case  accu-
racy may be estimated by comparison with the results of direct experiments.
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