Taiwan Earthquake Occurrence Probability Estimation from Regional Source Model Since 1900

  • Author(s): Kuo-Liang Wen, Tzu-Hsiu Wu, Ming-Wey Huang, Chi-Ling Chang, Sheu-Yien Liu, and Bing-Ru Wu
  • DOI: 10.3319/TAO.2013.11.26.02(T)
  • Keywords: Regional Source, Occurrence probability, Micro-zoning
Abstract

Taiwan is located on the boundary between the Eurasia Plate and Philippine Sea Plate, which is a very high seismicity rate area. We begin calculating the earthquake occurrence probability using four recurrence models to mitigate seismic disasters. We focus on estimating the occurrence probabilities for regional earthquake sources based on the catalog released by the Central Weather Bureau over the period from 1900 to 2011. According to the tectonic and seismicity characteristics areas in and around Taiwan are divided into several zones for shallow and deep earthquakes. We utilize four recurrence models to estimate the earthquake occurrence probabilities over the next 30 and 50 years, respectively. In addition, the grid-based probabilities in 0.1° × 0.1° spatial size are calculated using the micro-zoning method. The results obtained from four recurrence models show that areas with high values over the next 30 and 50 years are correlated with two subduction zones and a suture zone. High probabilities in the western foothills appear highly active tectonic. Moreover, the high values appear at in Eastern Taiwan, offshore Hualien County. There are discrepancies between the results from the four models. The highest grid-based probability is about 3.0, 3.5, 2.5 and 3.5% for the Lognormal, Gamma, Exponential, and Weibull models, respectively. The inland probabilities are below 0.5% for the results from Lognormal, Gamma, and Weibull models. Even so, the results from the Exponential model are upmost in the range from 0.5 - 1.0%.

Read 981 times