The 2007 World Economic Forum (WEF) referred to climate change as the overriding problem we face. Concerns have been raised about how global warming would accelerate future climate change and its consequences. Many climate change studies expect the possible occurrence of extreme high temperature, increase in heavy rains and strong typhoons in the near future. Currently, climate change scenarios are used to prepare an appropriate plan for these phenomena under climate change. The main purpose of this paper is to suggest and evaluate an operational method of assessing the potential impact of climate change on hydrologic components and water resources at the regional scale. Future runoff was simulated using high resolution Regional Circulation Model (RCM) (12.5 × 12.5 km) Representative Concentration Pathway (RCP) scenario operated by the Korea Meteorological Administration (KMA) and a semi-distribution model or SLURP (Semi-distributed Land Use-based Runoff Process). The study was carried out on the Han River including its nine dams. The study found that runoff characteristics, especially annual distribution, could change. The discharge in July tends to decrease while runoff can increase in August and September. The flow duration curve was estimated and compared with observed data and simulated daily runoff data for Paldang-dam to evaluate the effect of climate change. The analysis of the flow duration curve shows that the mean average low flow increased while the average wet and normal flow decreased under the climate change scenario.