Quantitative Precipitation Estimation over Ocean Using Bayesian Approach from Microwave Observations during the Typhoon Season

  • Author(s): Jen-Chi Hu, Wann-Jin Chen, J. Chris tine Chiu, Jiang-Liang Wang, and Gin-Rong Liu
  • DOI: 10.3319/TAO.2008.12.17.01(A)
  • Keywords: Bayesian Rain rate Typhoon TRMM GPROF
  • Citation: Hu, J. C., W. J. Chen, J. C. Chiu, J. L. Wang, and G. R. Liu, 2009: Quantitative precipitation estimation over ocean using Bayesian approach from microwave observations during the typhoon season. Terr. Atmos. Ocean. Sci., 20, 817-832, doi: 10.3319/TAO.2008.12.17.01(A)
Abstract

We have developed a new Bayesian approach to retrieve oceanic rain rate from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), with an emphasis on typhoon cases in the West Pacific. Retrieved rain rates are validated with measurements of rain gauges located on Japanese islands. To demonstrate improvement, retrievals are also compared with those from the TRMM/Precipitation Radar (PR), the Goddard Profiling Algorithm (GPROF), and a multi-channel linear regression statistical method (MLRS). We have found that qualitatively, all methods retrieved similar horizontal distributions in terms of locations of eyes and rain bands of typhoons. Quantitatively, our new Bayesian retrievals have the best linearity and the smallest root mean square (RMS) error against rain gauge data for 16 typhoon over passes in 2004. The correlation coefficient and RMS of our retrievals are 0.95 and ~2 mm hr-1, respectively. In particular, at heavy rain rates, our Bayesian retrievals out perform those retrieved from GPROF and MLRS. Overall, the new Bayesian approach accurately retrieves surface rain rate for typhoon cases. Accurate rain rate estimates from this method can be assimilated in models to improve forecast and prevent potential damages in Taiwan during typhoon seasons.

Read 1110 times