Citation:Sun, H., H. Zhang, J. Xu, X. Chen, J. Zhou, and M. Zhang, 2019: Influences of the Tibetan Plateau on tidal gravity detected using superconducting gravimeters in the Lhasa, Lijiang, and Wuhan Stations in China. Terr. Atmos. Ocean. Sci., 30, 139-149, doi: 10.3319/TAO.2019.02.14.01
Citation:Hwang, C., W.-B. Shen, C. K. Shum, and X. Song, 2019: Introduction to the special issue on Tibet: Contemporary geodetic-geophysical observations and interpretations. Terr. Atmos. Ocean. Sci., 30, 1-5, doi: 10.3319/TAO.2019.01.22.01
Citation:Rau, R.-J. and T.-L. Tseng, 2019: Introduction to the special issue on the 2018 Hualien, Taiwan, earthquake. Terr. Atmos. Ocean. Sci., 30, 281-283, doi: 10.3319/TAO.2019.05.31.01
Citation:Liu, Y., S. Liu, Z. Jiang, and S. Chen, 2020: Analysis on full-domain apparent resistivity characteristics of ground-tunnel transient electromagnetic method. Terr. Atmos. Ocean. Sci., 31, 539-549, doi: 10.3319/TAO.2019.07.02.02
Citation:Kasaya, T., H. Iwamoto, Y. Kawada, and T. Hyakudome, 2020: Marine DC resistivity and self-potential survey in the hydrothermal deposit areas using multiple AUVs and ASV. Terr. Atmos. Ocean. Sci., 31, 579-588, doi: 10.3319/TAO.2019.09.02.01
Citation:Chen, K., M. Deng, P. Yu, Q. Yang, X. Luo, and X. Yi, 2020: A near-seafloor-towed CSEM receiver for deeper target prospecting. Terr. Atmos. Ocean. Sci., 31, 565-577, doi: 10.3319/TAO.2020.08.03.01
Citation:Chang, P.-Y., T. Goto, X. Hu, and E. Um, 2020: A review of electromagnetic exploration Techniques and their applications in East Asia. Terr. Atmos. Ocean. Sci., 31, 487-495, doi: 10.3319/TAO.2020.11.05.01
Citation:Bramanto, B., K. Prijatna, A. M. Pahlevi, D. A. Sarsito, D. Dahrin, E. D. Variandy, and R. I. S. Munthaha, 2021: Determination of gravity anomalies in Java, Indonesia, from airborne gravity survey. Terr. Atmos. Ocean. Sci., 32, 781-795, doi: 10.3319/TAO.2021.06.04.01
Citation:Xue, Z., D. Guo, H. Li, and P. Zhang, 2021: Analysis on Bouguer gravity anomaly characteristics and boundary identification in China and surrounding regions. Terr. Atmos. Ocean. Sci., 32, 797-812, doi: 10.3319/TAO.2021.06.22.02
Citation:McCubbine, J. C., W. E. Featherstone, and N. J. Brown, 2021: Australian quasigeoid modelling: Review, current status and future plans. Terr. Atmos. Ocean. Sci., 32, 829-845, doi: 10.3319/TAO.2021.08.10.01
Citation:Goyal, R., W. E. Featherstone, S. J. Claessens, O. Dikshit, and N. Balasubramanian, 2021: An experimental Indian gravimetric geoid model using Curtin University’s approach. Terr. Atmos. Ocean. Sci., 32, 813-827, doi: 10.3319/TAO.2021.08.10.02
Citation:Dumrongchai, P., C. Srimanee, N. Duangdee, and J. Bairaksa, 2021: The determination of Thailand Geoid Model 2017 (TGM2017) from airborne and terrestrial gravimetry. Terr. Atmos. Ocean. Sci., 32, 857-872, doi: 10.3319/TAO.2021.08.23.01
Citation:Timilsina, S., M. Willberg, and R. Pail, 2021: Regional geoid for Nepal using Least-Squares Collocation. Terr. Atmos. Ocean. Sci., 32, 847-856, doi: 10.3319/TAO.2021.08.23.02